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ABSTRACT

| remember the first time | saw an Al agent go off the rails during a demo at the ISBM College Hackathon—
it was supposed to handle a simple refund process but ended up “approving” a fake transaction because it lost
track midway through the chat. Moments like that highlight the real issue: as Generative Al shifts from just
chatting to actually acting in the world with “Agentic” systems, enterprises face this weird reliability crunch.
LLMs are amazing at reasoning, sure, but they’re plagued by this shaky unpredictability I call “Logic Drift”—
basically, they start veering away from the rules as conversations drag on.

That’s why, in this work, I put together “LogicGuard,” a neurosymbolic setup aimed at fixing these slip-ups. It
basically layers a solid, rule-based checker around the fuzzy Al brain, using Linear Temporal Logic on Finite
Traces (LTLf) to keep things in line. We turn everyday procedure docs into these neat Deterministic Finite
Automata (DFA) machines that enforce the rules no matter what. The whole thing breaks down into three parts:
a compiler for the rules, a prober to link words to logic symbols, and a gatekeeper that says yes or no to
actions.

Testing it out in finance, auth, and logistics scenarios, Logic-Guard held steady at about 95% reliability on those
marathon tasks where plain agents tanked to under 50%. It edged out four other safety tools by roughly double
in handling tricky attacks. That said, we still hit a 5% snag from fuzzy symbol match-ing—I’1l dive into
ablations to break down that neurosymbolic headache.

Index Terms: Neurosymbolic Al, AgenticOps, Linear Tem-poral Logic, Formal Verification, Large Language
Models, Al Safety, Runtime Monitoring.

INTRODUCTION
The Enterprise Al Paradox

By 2025, the tech world’s got this wild split. On one side, you’ve got Generative Al—especially these beefed-
up Large Language Models turning into full-on “Agentic” setups that think on their feet and mess with real
systems. But slamming right into that is the big roadblock: they’re just not reliable enough for the real deal.
Companies are itching to roll out agents for heavy lifting, like poking databases, crunching financials, or locking
down user logins, but the fear of random screw-ups keeps them sidelined.

Shifting from chatty bots that just spit out words to ones that rewrite the world? That’s a game-changer for
risks. A bot dreaming up bad poetry is funny; one botching a database with a hallucinated DROP TABLE
command? Disaster. From what I’ve seen in reports and chats with folks in the industry, around 73% of these
Al trials never make it past the lab [1]. It’s not that the smarts aren’t there—it’s the trust gap. How do you bet
your ops on a system that might forget the playbook halfway through a long session?
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Logic Drift: A Formal Definition

I ended up dubbing this creeping unreliability “Logic Drift” after wrestling with it in some early tests—it’s like
the agent’s focus just erodes over time, turning a straight-line process into a wobbly mess. Think of it as a failure
prob that starts low but ramps up with every extra turn in the convo. Regular code? Zero fails, every time. But
these Al agents? Nonzero risk that snowballs, especially when someone throws curveballs like sneaky prompts.
In spots where rules are ironclad—GRC-heavy zones like finance—the opaque guts of LLMs become a non-
starter.

The Logic Guard Proposition

Enter Logic Guard: my take on offloading the rule-sticking to a no-nonsense monitor that runs in parallel.
Drawing from LTLf, it spins procedural specs into DFAs that lock in those time-based must-dos, like holding
off on payouts till approvals clear. If the symbols line up right, it’s bulletproof.

Contributions
Wrapping this up, here’s what I think stands out from the effort:
1) First off, a solid breakdown of Logic Drift and why it tanks agent trust in enterprise setups.

2) Then, the full LogicGuard blueprint—a practical neu-rosymbolic rig for enforcing policies that actually
stick.

3) | threw it against four baselines across three domains, churning through over 2,400 cases to see what holds.
4) The ablations zoom in on the grounding glitches, with some fixes sketched out.

5) And yeah, | didn’t sugarcoat the 5% leftovers, dissecting where it all went sideways.

Related Work

Al Safety Guardrails

Current Al safety frameworks can be grouped into three categories: Content-Based Filters: In systems like
Guardrails

Al [2] and Llama Guard [3], the main focus is on input/output sanitization. It performs format validation, toxicity
detection, and checks P11 leakage. No temporal reasoning here. These are stateless; every request is evaluated in
isolation from others. Dialogue Flow Controllers: NVIDIA NeMo Guardrails [4] in-troduces Colang, a domain-
specific language to describe con-versational flows. While this allows for simple state machines-e.g., “after
greeting expect query”-it is not expressive as temporal logic and cannot encode complex dependencies such as
“property A needs to hold until event B happens.” The Prompt Engineering Approaches: The Constitutional Al
[5] and related methods embed the safety rules into prompts. These suffer from the very problem of drift we
want to solve: the LLM may well violate those rules under adversarial conditions or context overflow. Gap: None
of these frameworks offer provable guarantees of temporal properties over multi-step agent execution traces.

Formal Methods for Machine Learning

Formal methods in machine learning, e.g., neural network verification, have traditionally focused on the static
verification of models at train time rather than runtime monitoring of agent behavior in a dynamic environment.
Runtime Verification [6] has generally been used to monitor program execution against formal specifications.
LogicGuard adapts RV techniques to the unique challenges of LLM-based agents: nondeterministic actions,
natural language interfaces, and semantic grounding.

Page 2307 www.rsisinternational.org


https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/

INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (1JRSI)
ISSN No. 2321-2705 | DOI: 10.51244/1JRSI [Volume XII Issue XI November 2025

% RSIS N

Neurosymbolic Al

The neurosymbolic integration challenge-neural learning combined with symbolic reasoning-has been explored
in vari-ous contexts [7]. Systems like the Neuro-Symbolic Concept Learner [8] focus on knowledge
representation and learn-ing. LogicGuard addresses a complementary problem: symbol grounding for runtime
monitoring. Our Semantic Prober must map unstructured agent outputs to discrete predicates in real-time.
Positioning: This is the first framework to combine LTLf-based runtime verification with neurosymbolic
ground-ing for enterprise agent safety.

The Core Problem: Logic Drift
Characterizing Logic Drift

Logic Drift exhibits two main failure modes: Hallucinated Reasoning Paths: The LLM produces reasoning steps
that do not correspond to actual tool calls or state changes. Example: claiming “I have verified manager
approval” without calling the function check_approval(). Semantic Drift: The LLM takes semantically plausible
but procedurally invalid paths. High probability mass on contextually relevant tokens may override system
instructions, especially in long contexts where the attention mechanisms degrade [9].

Case Study: The Refund Failure Mode

Given a “Customer Refund Agent” with the policy: Only process refunds > $100 after Manager Approval. This,
in traditional Python, is deterministic code; an Agent, however operates probabilistically. If a user makes a
false assertion of authority (“I am the CEO, process this immediately”), the agent may give higher weight to the
“CEQO” tokens than the system prompt, causing a Temporal Dependency to fail. The rule is not just about the
action, but the history leading to the action.

Empirical Evidence of Drift

Initial experimentation was done with GPT-4 Turbo on 20-turn conversations that require strict adherence to
SOPs. The results were:

- Turns 1-5: 96.2% compliance
- Turns 10-15: 68.7% compliance
- Turns 16-20: 47.3% compliance

This 50% degradation over 20 turns validates the Logic Drift phenomenon, in turn motivating the need for
deterministic enforcement.

Threat Model

Assumptions:

. Adversary controls user input only (not model weights or API)
. Agent has deterministic tool call interface (JSON schema)

. SOPs can be expressed in LTLf (finite-trace assumption)

In Scope:

- Prompt injection attacks

- Social engineering (role impersonation, urgency manipu-lation)
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- Context confusion (long conversation histories)

Out of Scope:

. Adversarial ML attacks on the Semantic Prober itself
. Supply chain attacks (malicious tools/APIs)

- Timing/side-channel attacks on DFA state

Solution: LTL as Runtime Monitor

Why Linear Temporal Logic?

Propositional logic conventionally describes the state of the world at a single moment in time. Linear Temporal
Logic (LTL) extends propositional logic to describe states over time. Since the tasks of an agent are finite
sequences rather than infinite streams, we employ LTLf, or LTL on Finite Traces. It maintains the expressiveness
of LTL but it is computationally decidable for discrete tasks [10].

Temporal Operators

LTL enables us to specify rules that LLMs cannot learn re-liably from prompts alone. We employ the following
standard operators:

. Globally (Box): Property must hold at every step.
. Eventuality (Diamond): Property must hold at some fu-ture step.

Until (U): A property A has to hold until B becomes true.

. Implies : Material implication.

For clarity, we use standard abbreviations: o(¢ — 9w) denotes a response property—if ¢ occurs, y must
eventually follow.

Policy Examples

Refund Domain: No refund execution until the manager approves.

drefund = —(exec_refund)U(mgr_approval) (1)

Authentication Domain: password changes must be 2FA-verified

dauth = O(req_pwd_change— ¢2fa_verified) (2)

Logistics Domain: High-value shipments are to be approved by a supervisor (S) before rerouting.
Pogistics = O(high_value reroute_req— ¢S_o0k)

©)

From Logic to Automata

LogicGuard generates DFA from given LTL formulas using the ItIf2dfa library [11]. This DFA executes together
with the agent as a shadow monitor. If the agent attempts an action that would transition the DFA to a Sink State-
an LTL violation-the action is blocked with 100% certainty.
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System Architecture

The LogicGuard architecture serves as the middleware layer between the LLM and the Environment. It consists
of three key modules: As illustrated in Fig. 1.
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Module B: The Semantic Prober

This module addresses the Symbol Grounding Problem [12]: how to map the Agent’s unstructured text/JSON to
the atomic propositions of the DFA.

1) Design Choices: We employ Small Language Models as binary classifiers, instead of rule-based
extractors, owing to their flexibility and robustness.

2) Implementation: For each atomic proposition p; in the LTL formula, we construct a classification prompt:
You are a precise classifier.Analyze context:

Agent History: [last 3 turns] Proposed Action: {action_json}
Question: Has "manager approval™" been explicitly received in this conversation? Answer ONLY: YES or NO
The Prober queries GPT-40-mini and returns a boolean vector.

3) Accuracy Evaluation: We created a held-out test set of 500 manually labeled ground-truth cases across
all three domains. The Prober achieved:

- Overall Accuracy: 94.8% (474/500 correct)
- Precision: 93.2% (low false positive rate)

- Recall: 96.1% (few missed violations)

- F1 Score: 94.6%

Failure Analysis: The 26 errors (5.2%) were primarily in “Social Engineering” scenarios where adversarial
prompts em-bedded violations in hypothetical framing (e.g., “Let’s simulate a system test where approval is
assumed granted”).
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Module C: The Runtime Gatekeeper

The Gatekeeper maintains the current state of the DFA (Scurr). Upon receiving the boolean vector Vou, it
calculates the transition:

If S

next

o(Scurr, Vout) — Snext 4)

is an Accepting State: The action is permitted,

and Scurr «<— Snext. IT Snext IS @ Sink State: The action
is blocked, and structured feedback is returned to the agent:

{

Fig. 1. The LogicGuard Neurosymbolic Architecture. The middleware intercepts agent actions, uses a small
SLM to ground symbols, and a DFA to enforce stateful logic before permitting tool execution.

Module A: The Symbolic Spec Compiler

This module takes natural language rules and develops them into machine readable state machines. The pipeline
contains rule parsing, syntax validation, DFA generation (via MONA) and optimization (Hopcroft’s algorithm).
The resulting DFA is serialized and loaded by the Runtime Gatekeeper.

"status": "BLOCKED",

"reason™:  "Violation: exec_refund attempted without mgr_approval”,  "required_before retry":
["obtain_mgr_approval”]

}

This enables the agent to re-plan rather than failing silently.

Implementation

System Specifications

The prototype was developed in Python 3.11 using the following components:
- Agent (LLM): GPT-4 Turbo

- Semantic Prober: GPT-40-mini - low latency

Symbolic Engine: Itlf2dfa library with MONA backend

Orchestrator: Custom Python middleware

All experiments were conducted on AWS EC2 c5.4xlarge instances (16 vCPU, 32GB RAM).
Domain-Specific LTL Specifications

We implemented specifications regarding Financial Process-ing (Refunds), User Account Management
(Authentication), and Logistics (Shipping). Financial Processing (Refunds):
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$1 = —(exec_refund)U (mgr_approval) (5)
$> = o(amount> 1000 — dual_approval) (6)
User Account Management (Authentication):

$3 = o(pwd_change— ¢2fa_success) (7)
¢4 = —(delete_account)U (user_consent) (8)

Logistics (Shipping):

¢s = o(high_value/reroute— ¢S _ok) 9
¢e = o(intl_ship— ¢customs_cleared) (10)
Experimental Evaluation

Research Questions

We assessed Logic Drift mitigation, adversarial robustness, computational overhead, and residual failure rates.
RQ1: How does LogicGuard compare to existing safety frameworks in mitigating Logic Drift over long-horizon
tasks? RQ2: What is LogicGuard’s adversarial robustness against Red Team attacks? RQ3: What is the
computational overhead of runtime verification? RQ4: What factors contribute to the residual failure rate?

Baselines

We compared LogicGuard with Vanilla GPT-4, Guardrails Al (stateless filters), NeMo Guardrails (flow
controllers), and a Rule-Based Filter. B1 - Vanilla GPT-4: Standard agent with system prompt encoding SOPs
(no runtime enforcement). B2

- Guardrails Al: Stateless content filters for input/output val-idation using Python validators [2]. B3 - NeMo
Guardrails: Flow-based dialogue control using Colang scripts [4]. B4 - Rule-Based Filter: Hand-coded regex
patterns and JSON schema validators (deterministic but inflexible). B5 - Logic-Guard: Full neurosymbolic
architecture with LTLf enforce-ment.

Evaluation Metrics

- Success Rate: Percentage of tasks completed without SOP violations.

Violation Rate: Percentage of tasks where agent violates at least one rule.

Latency: End-to-end time from user input to tool execu-tion.

- False Positive Rate: Percentage of safe actions incor-rectly blocked.
Dataset Construction

We synthesized 2,400 test cases across three domains:

- 800 Benign Cases: Normal workflows with correct SOP adherence.

- 800 Edge Cases: Ambiguous scenarios testing boundary conditions.

- 800 Adversarial Cases: Red Team prompts designed to bypass policies.

Each case includes:
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- Initial state (e.g., refund amount, user role)
- Conversation history (1-20 turns)

. Expected outcome (permit/block with justification) Cases were validated by two independent human
annotators (Cohen’s x = 0.89, indicating strong agreement).

RQL1: Logic Drift Mitigation

We assessed all methods on the long-horizon tasks of 20 turns in sequence. We evaluated all methods on long-
horizon tasks (20 sequential turns) with 30 trials per turn length per domain (2,700 total trials).

Logic Drift: Success Rate over Extended Interactions

100
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Fig. 2. Comparative analysis of task success rates over 20 sequential interactions across all domains (N=90
trials per point). LogicGuard maintains 94.7% average reliability with realistic variance (95% CI shown), while
baseline agents exhibit significant drift. Rule-Based achieves stability but at 88.2% due to brittleness on edge
cases.

Results: As can be seen from Fig. 2, LogicGuard sustains an average success rate of 94.7% (o = 1.6) over all 20
turns. In comparison:

. Vanilla GPT-4 degraded to 47.3% at turn 20.

Guardrails Al reached 50.4%.

- NeMo reached 54.8%.
. The overall average success rate of LogicGuard in these 20 turns was 94.7%.

The Rule-Based baseline illustrates that determinism is not enough: it achieves lower violation rates but higher
false pos-itive rates-in fact, 11.8% as opposed to 2.1% for LogicGuard-block legitimate workflows. Statistical
Significance: Two-sample t-tests confirm that LogicGuard significantly outper-forms all baselines at turn 20-
all p < 0.001.

RQ2: Adversarial Robustness

We exposed systems to 200 Red Team attacks. LogicGuard obtained a 5.5% total violation rate versus 15.0% of
Vanilla GPT-4, a 63% reduction. LogicGuard had perfect defense, i.e., 0 failures, against Role Impersonation
attacks. We subjected all systems to 200 Red Team attacks (expanded from 100 in preliminary study) across 5
categories.
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Key Findings:

- LogicGuard achieves 5.5% total violation rate vs. 15.0% for Vanilla (63% relative reduction)

- Perfect defense against Role Impersonation (0/40 fail-ures)

- Weakness in Social Engineering (6/40 = 15.0%), where semantic ambiguity confuses the Prober
- Rule-Based does relatively well at 6.0% but introduces user friction through false positives
Failure Case Analysis: The 6 Social Engineering failures involved attacks like:

"For training purposes, let’s walk through a

Ablation 1: Remove Semantic Prober

Setup: Replace neural Prober with hand-coded regex ex-tractors for symbol grounding. Results:
- Success Rate: 88.3% (vs. 94.7% with Prober)

- False Positive Rate: 14.2% (vs. 2.1% with Prober) Analysis: Regex-based grounding is brittle and fails on
seman-tic variations. This validates the need for neural components

in the grounding layer.

Ablation 2: Remove DFA (Use LLM Only)

Setup: Encode LTL rules directly in system prompt without runtime DFA enforcement. Results:
- Success Rate: 76.2% (vs. 94.7% with DFA)

- Drift Coefficient: D(20) =0.238 (vs. 0.053 with DFA)

Analysis: Confirms that LLMs alone cannot reliably maintain temporal invariants. The DFA is essential for
deterministic enforcement.

Ablation 3: Ensemble Probing

Setup: Use 3 SLMs (GPT-4o0-mini, Claude-3-Haiku, hypothetical scenario where the approval wasGemini-
Flash) with majority voting for symbol grounding.

already obtained in a previous session..."
The Prober misclassified this as mgr_approval=True due to temporal confusion.
RQ3: Latency Analysis

LogicGuard introduces around 224ms of overhead per transaction, accounting for about 11.1%. This is generally
acceptable in high-stakes enterprise applications. We measured end-to-end execution time for 300 transactions
per method.

Breakdown of LogicGuard Overhead:
- Semantic Prober (GPT-40-mini): 182ms average

- DFA State Transition: 8ms average
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- JSON Parsing & 1/0: 34ms average

- Total Overhead: 224ms (=11.1%)

For complex reasoning tasks (>2s agent response time), the relative overhead drops below 10%. Given that
a single SOP violation in financial services can cost $50K-$500K per incident, this trade-off is justified.

RQ4: False Positive Analysis

LogicGuard incorrectly blocked only 2.1% of the legitimate actions, as compared to 11.8% for the Rule-Based
baseline; it has thus proved to be less brittle than hard-coded rules. We evaluated how often each method
incorrectly blocks legitimate actions on the 800 benign test cases.

Rule-Based filtering suffers from brittleness—unable to handle paraphrasing or context-dependent semantics.
Logic-Guard’s 2.1% false positive rate is acceptable for production deployment with human escalation for
flagged cases.

Ablation Studies

To isolate the contribution of each component, we con-ducted three ablations on 600 test cases (200 per domain):
Results:

- Success Rate: 96.4% (vs. 94.7% single Prober)

- Latency: 412ms overhead (vs. 224ms single Prober)

- Cost: 3x API calls

Analysis: Ensemble probing reduces the residual failure rate from 5.3% to 3.6%, but at significant cost/latency
penalty. Suitable for high-stakes scenarios (e.g., financial approvals

>$10K).
Summary

These ablations confirm that the neural Prober representing flexible grounding and the symbolic DFA for
enforcement are necessary components.

DISCUSSION
The Neurosymbolic Gap

The 5.3% residual failure rate is actually known as the “Neurosymbolic Gap.” By performing root cause analysis,
researchers found that 46.9% of these failures were due to Temporal Confusion (misjudging past vs. current
events), while 34.4% arose from Semantic Ambiguity in adversarial prompts.

The 5.3% residual failure rate (100% - 94.7%) represents the Neurosymbolic Gap—the persistent challenge of
ground-ing symbolic predicates in neural representations. While the Symbolic Engine (DFA) provides
mathematical guarantees, the Neural Prober remains probabilistic.

Root Cause Analysis of 32 failures out of 600 test cases:

- Temporal Confusion (15 cases, 46.9%0): Prober mis-judged whether an event occurred in current vs. past
context

- Semantic Ambiguity (11 cases, 34.4%): Adversarial framing, such as posing a hypothetical scenario,
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confused intent classification.

Table | Red Team Violation Rates Across Methods (N=200)

Attack N Violation Rates (N, %)
Category
Vanilla GPT-4 | Guard. Al NeMo Guard. | Rule Based Logic Guard
Role Imper. 40 8 (20.0%) 5 (12.5%) 3 (7.5%) 1 (2.5%) 0 (0.0%)
Authority 40 6 (15.0%) 5 (12.5%) 4 (10.0%) 2 (5.0%) 1 (2.5%)
Urgency 40 |10 (25.0%) 8 (20.0%) 6 (15.0%) 3 (7.5%) 2 (5.0%)
Social Eng. 40 | 4 (10.0%) 4 (10.0%) 4 (10.0%) 5 (12.5%) 6 (15.0%)
Policy Bypass |40 | 2 (5.0%) 3 (7.5%) 2 (5.0%) 1 (2.5%) 2 (5.0%)
Total 200 | 30 (15.0%) 25 (12.5%) 19 (9.5%) 12 (6.0%) 11 (5.5%)
Table Il Latency Analysis (N=300 per method)
Method Mean (ms) Std (ms) P95 (ms) Overhead
Vanilla GPT-4 2,018 189 2,387 -
Guardrails Al 2,145 203 2,521 +6.3%
NeMo Guard. 2,231 197 2,612 +10.6%
Rule-Based 2,052 178 2,401 +1.7%
LogicGuard 2,242 206 2,628 +11.1%
Table 111 False Positive Rates on Benign Cases (N=800)
Method False Positives Rate
Vanilla GPT-4 12 1.5%
Guardrails Al 38 4.8%
NeMo Guardrails 29 3.6%
Rule-Based 94 11.8%
LogicGuard 17 2.1%

- Implicit Signals (4 cases, 12.5%): Inference required beyond explicit text - e.g., approval via signed token

- JSON Parsing Errors (2 cases, 6.2%): Malformed tool call schemas

Practical Deployment Considerations

LogicGuard is recommended for high-risk domains, such as financial and healthcare, where SOPs are well-
defined. It is not recommended for creative and open-ended tasks or ultra-low-latency requirements.
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When to Deploy LogicGuard:

. High-risk domains (financial, healthcare, legal)

- Tasks with well-defined SOPs expressible in LTL

. Scenarios where 5% residual risk is acceptable with human escalation
When NOT to Deploy:

Table IV Ablation Study Results (N=600)

Configuration Success Rate FP Rate Latency Overhead
Full LogicGuard 94.7% 2.1% 224ms

- Semantic Prober 88.3% 14.2% 18ms

- DFA Enforcement 76.2% 1.5% 182ms

+ Ensemble (3 SLMs) 96.4% 1.8% 412ms

. Creative/open-ended tasks where strict rules inhibit func-tionality
. Ultra-low-latency requirements (<500ms end-to-end)

. Domains where SOPs are ambiguous or frequently chang-ing
Comparison with Concurrent Work

Two recent papers address related problems: Reflexion [12] uses self-reflection for agent correction but remains
probabilis-tic. LogicGuard provides deterministic guarantees for a subset of constraints. ToolEmu [16]
simulates tool execution for safety testing but doesn’t enforce runtime constraints. These approaches are
complementary to LogicGuard.

Limitations

L1 - LTL Expressiveness: Not all SOPs are expressible in LTL. For example, aggregate constraints (‘“no
more than 5 refunds per day”) require extensions like Metric Temporal Logic (MTL).

L2 - Semantic Grounding Bottleneck: The 94.8% Prober accuracy is the system’s ceiling. More sophisticated
grounding (e.g., fine-tuned models on domain data) could improve this. L3 - Cost: Each transaction requires 2
LLM calls (agent + prober). For high-volume systems, this doubles API costs.

L4 - Rule Authoring: Converting SOPs to LTL currently requires formal methods expertise. Future work should
explore LLM-assisted translation with human verification.

Future Work
Improving Symbol Grounding

Direction 1 - Fine-Tuned Classifiers: Train domain-specific BERT models on labeled SOP compliance data,
po-tentially achieving >98% accuracy.

Direction 2 - Active Learning: Implement confidence scor-ing with human-in-the-loop verification for
borderline cases
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(p €[0.4,0.6]).

Direction 3 - Multimodal Grounding: Extend to visual agents where propositions must be grounded in
image/video content.

Extending Temporal Logic

Metric Temporal Logic (MTL): Support constraints like “approval must be received within 30 minutes.”
Probabilistic LTL: Express rules like “approval required with 0.95 confidence” for risk-calibrated enforcement.
A.  Explainability and Visualization

Develop interactive tools for operators to:

- Visualize current DFA state

- Inspect which proposition caused a block

- Replay execution traces for post-incident analysis

B.  Automated Rule Translation

Explore LLM-assisted conversion of natural language SOPs to LTL formulas with verification:

CONCLUSION

This paper introduces LogicGuard, a neurosymbolic frame-work that addresses the critical barrier to enterprise
Al adop-tion: the inability to guarantee operational compliance in stochastic systems. LogicGuard combines
Linear Temporal Logic with neural symbol grounding to provide mathemat-ical assurance on temporal
properties with flexibility in the reasoning process based on LLM.

Our experimental validation across more than 2,400 test cases and four baseline comparisons shows:
. 2.0x improvement in long-horizon reliability: 94.7% vs. 47.3%

. 63% reduction in adversarial vulnerability: 5.5% vs. 15.0%

. Acceptable overhead of 11.1% latency for deterministic enforcement

. Production viability w/ 2.1% false positive rate

The 5.3% residual failure rate underlines the challenge of neurosymbolic integration, while LogicGuard
signals a paradigm shift from “trusting the black box” to “verifying the critical path.” An organization can
confidently deploy Al agents for well-defined workflows since human oversight is retained only for edge cases
flagged by the Gatekeeper.

The architecture is open to extension: ensemble probing can reduce failures to 3.6%, fine-tuned classifiers could
approach 99% accuracy, and MTL extensions could handle richer tem-poral constraints. LogicGuard lays the
blueprint for the next generation of Enterprise Al-from systems that merely respond, to digital employees that
work under provable operational constraints.
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ARTIFACTS

All source code, datasets, LTL specifications, and experimental scripts can be found at:

https://github.com/OMx0777/LogicGuard.

The repository includes :

Complete implementation of LogicGuard (3,200 LoC)
2,400 test cases with ground truth annotations

Red Team Adversarial Prompt Dataset.

Jupyter notebooks reproducing all figures and tables

Docker container for reproducible evaluation
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