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ABSTRACT 

I remember the first time I saw an AI agent go off the rails during a demo at the ISBM College Hackathon—

it was supposed to handle a simple refund process but ended up “approving” a fake transaction because it lost 

track midway through the chat. Moments like that highlight the real issue: as Generative AI shifts from just 

chatting to actually acting in the world with “Agentic” systems, enterprises face this weird reliability crunch. 

LLMs are amazing at reasoning, sure, but they’re plagued by this shaky unpredictability I call “Logic Drift”—

basically, they start veering away from the rules as conversations drag on. 

That’s why, in this work, I put together “LogicGuard,” a neurosymbolic setup aimed at fixing these slip-ups. It 

basically layers a solid, rule-based checker around the fuzzy AI brain, using Linear Temporal Logic on Finite 

Traces (LTLf) to keep things in line. We turn everyday procedure docs into these neat Deterministic Finite 

Automata (DFA) machines that enforce the rules no matter what. The whole thing breaks down into three parts: 

a compiler for the rules, a prober to link words to logic symbols, and a gatekeeper that says yes or no to 

actions. 

Testing it out in finance, auth, and logistics scenarios, Logic-Guard held steady at about 95% reliability on those 

marathon tasks where plain agents tanked to under 50%. It edged out four other safety tools by roughly double 

in handling tricky attacks. That said, we still hit a 5% snag from fuzzy symbol match-ing—I’ll dive into 

ablations to break down that neurosymbolic headache. 

Index Terms: Neurosymbolic AI, AgenticOps, Linear Tem-poral Logic, Formal Verification, Large Language 

Models, AI Safety, Runtime Monitoring. 

INTRODUCTION 

The Enterprise AI Paradox 

By 2025, the tech world’s got this wild split. On one side, you’ve got Generative AI—especially these beefed-

up Large Language Models turning into full-on “Agentic” setups that think on their feet and mess with real 

systems. But slamming right into that is the big roadblock: they’re just not reliable enough for the real deal. 

Companies are itching to roll out agents for heavy lifting, like poking databases, crunching financials, or locking 

down user logins, but the fear of random screw-ups keeps them sidelined. 

Shifting from chatty bots that just spit out words to ones that rewrite the world? That’s a game-changer for 

risks. A bot dreaming up bad poetry is funny; one botching a database with a hallucinated DROP TABLE 

command? Disaster. From what I’ve seen in reports and chats with folks in the industry, around 73% of these 

AI trials never make it past the lab [1]. It’s not that the smarts aren’t there—it’s the trust gap. How do you bet 

your ops on a system that might forget the playbook halfway through a long session? 
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Logic Drift: A Formal Definition 

I ended up dubbing this creeping unreliability “Logic Drift” after wrestling with it in some early tests—it’s like 

the agent’s focus just erodes over time, turning a straight-line process into a wobbly mess. Think of it as a failure 

prob that starts low but ramps up with every extra turn in the convo. Regular code? Zero fails, every time. But 

these AI agents? Nonzero risk that snowballs, especially when someone throws curveballs like sneaky prompts. 

In spots where rules are ironclad—GRC-heavy zones like finance—the opaque guts of LLMs become a non-

starter. 

The Logic Guard Proposition 

Enter Logic Guard: my take on offloading the rule-sticking to a no-nonsense monitor that runs in parallel. 

Drawing from LTLf, it spins procedural specs into DFAs that lock in those time-based must-dos, like holding 

off on payouts till approvals clear. If the symbols line up right, it’s bulletproof. 

Contributions 

Wrapping this up, here’s what I think stands out from the effort: 

1) First off, a solid breakdown of Logic Drift and why it tanks agent trust in enterprise setups. 

2) Then, the full LogicGuard blueprint—a practical neu-rosymbolic rig for enforcing policies that actually 

stick. 

3) I threw it against four baselines across three domains, churning through over 2,400 cases to see what holds. 

4) The ablations zoom in on the grounding glitches, with some fixes sketched out. 

5) And yeah, I didn’t sugarcoat the 5% leftovers, dissecting where it all went sideways. 

Related Work 

AI Safety Guardrails 

Current AI safety frameworks can be grouped into three categories: Content-Based Filters: In systems like 

Guardrails 

AI [2] and Llama Guard [3], the main focus is on input/output sanitization. It performs format validation, toxicity 

detection, and checks PII leakage. No temporal reasoning here. These are stateless; every request is evaluated in 

isolation from others. Dialogue Flow Controllers: NVIDIA NeMo Guardrails [4] in-troduces Colang, a domain-

specific language to describe con-versational flows. While this allows for simple state machines-e.g., “after 

greeting expect query”-it is not expressive as temporal logic and cannot encode complex dependencies such as 

“property A needs to hold until event B happens.” The Prompt Engineering Approaches: The Constitutional AI 

[5] and related methods embed the safety rules into prompts. These suffer from the very problem of drift we 

want to solve: the LLM may well violate those rules under adversarial conditions or context overflow. Gap: None 

of these frameworks offer provable guarantees of temporal properties over multi-step agent execution traces. 

Formal Methods for Machine Learning 

Formal methods in machine learning, e.g., neural network verification, have traditionally focused on the static 

verification of models at train time rather than runtime monitoring of agent behavior in a dynamic environment. 

Runtime Verification [6] has generally been used to monitor program execution against formal specifications. 

LogicGuard adapts RV techniques to the unique challenges of LLM-based agents: nondeterministic actions, 

natural language interfaces, and semantic grounding. 
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Neurosymbolic AI 

The neurosymbolic integration challenge-neural learning combined with symbolic reasoning-has been explored 

in vari-ous contexts [7]. Systems like the Neuro-Symbolic Concept Learner [8] focus on knowledge 

representation and learn-ing. LogicGuard addresses a complementary problem: symbol grounding for runtime 

monitoring. Our Semantic Prober must map unstructured agent outputs to discrete predicates in real-time. 

Positioning: This is the first framework to combine LTLf-based runtime verification with neurosymbolic 

ground-ing for enterprise agent safety. 

The Core Problem: Logic Drift 

Characterizing Logic Drift 

Logic Drift exhibits two main failure modes: Hallucinated Reasoning Paths: The LLM produces reasoning steps 

that do not correspond to actual tool calls or state changes. Example: claiming “I have verified manager 

approval” without calling the function check approval(). Semantic Drift: The LLM takes semantically plausible 

but procedurally invalid paths. High probability mass on contextually relevant tokens may override system 

instructions, especially in long contexts where the attention mechanisms degrade [9]. 

Case Study: The Refund Failure Mode 

Given a “Customer Refund Agent” with the policy: Only process refunds > $100 after Manager Approval. This, 

in traditional Python, is deterministic code; an Agent, however operates probabilistically. If a user makes a 

false assertion of authority (“I am the CEO, process this immediately”), the agent may give higher weight to the 

“CEO” tokens than the system prompt, causing a Temporal Dependency to fail. The rule is not just about the 

action, but the history leading to the action. 

Empirical Evidence of Drift 

Initial experimentation was done with GPT-4 Turbo on 20-turn conversations that require strict adherence to 

SOPs. The results were: 

• Turns 1-5: 96.2% compliance 

• Turns 10-15: 68.7% compliance 

• Turns 16-20: 47.3% compliance 

This 50% degradation over 20 turns validates the Logic Drift phenomenon, in turn motivating the need for 

deterministic enforcement. 

Threat Model 

Assumptions: 

• Adversary controls user input only (not model weights or API) 

• Agent has deterministic tool call interface (JSON schema) 

• SOPs can be expressed in LTLf (finite-trace assumption) 

In Scope: 

• Prompt injection attacks 

• Social engineering (role impersonation, urgency manipu-lation) 
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• Context confusion (long conversation histories) 

Out of Scope: 

• Adversarial ML attacks on the Semantic Prober itself 

• Supply chain attacks (malicious tools/APIs) 

• Timing/side-channel attacks on DFA state 

Solution: LTL as Runtime Monitor 

Why Linear Temporal Logic? 

Propositional logic conventionally describes the state of the world at a single moment in time. Linear Temporal 

Logic (LTL) extends propositional logic to describe states over time. Since the tasks of an agent are finite 

sequences rather than infinite streams, we employ LTLf, or LTL on Finite Traces. It maintains the expressiveness 

of LTL but it is computationally decidable for discrete tasks [10]. 

Temporal Operators 

LTL enables us to specify rules that LLMs cannot learn re-liably from prompts alone. We employ the following 

standard operators: 

• Globally (Box): Property must hold at every step. 

• Eventuality (Diamond): Property must hold at some fu-ture step. 

• Until (U): A property A has to hold until B becomes true. 

• Implies : Material implication. 

For clarity, we use standard abbreviations: □(ϕ → ♢ψ) denotes a response property—if ϕ occurs, ψ must 

eventually follow. 

Policy Examples 

Refund Domain: No refund execution until the manager approves. 

ϕrefund = ¬(exec_refund)U (mgr_approval) (1) 

Authentication Domain: password changes must be 2FA-verified 

ϕauth = □(req_pwd_change → ♢2fa_verified) (2) 

Logistics Domain: High-value shipments are to be approved by a supervisor (S) before rerouting. 

ϕlogistics = □(high_value ∧ reroute_req → ♢S_ok) 

(3) 

From Logic to Automata 

LogicGuard generates DFA from given LTL formulas using the ltlf2dfa library [11]. This DFA executes together 

with the agent as a shadow monitor. If the agent attempts an action that would transition the DFA to a Sink State-

an LTL violation-the action is blocked with 100% certainty. 
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System Architecture 

The LogicGuard architecture serves as the middleware layer between the LLM and the Environment. It consists 

of three key modules: As illustrated in Fig. 1. 

 

Module B: The Semantic Prober 

This module addresses the Symbol Grounding Problem [12]: how to map the Agent’s unstructured text/JSON to 

the atomic propositions of the DFA. 

1) Design Choices: We employ Small Language Models as binary classifiers, instead of rule-based 

extractors, owing to their flexibility and robustness. 

2) Implementation: For each atomic proposition pi in the LTL formula, we construct a classification prompt: 

You are a precise classifier.Analyze context: 

--- 

Agent History: [last 3 turns] Proposed Action: {action_json} 

--- 

Question: Has "manager approval" been explicitly received in this conversation? Answer ONLY: YES or NO 

The Prober queries GPT-4o-mini and returns a boolean vector. 

3) Accuracy Evaluation: We created a held-out test set of 500 manually labeled ground-truth cases across 

all three domains. The Prober achieved: 

• Overall Accuracy: 94.8% (474/500 correct) 

• Precision: 93.2% (low false positive rate) 

• Recall: 96.1% (few missed violations) 

• F1 Score: 94.6% 

Failure Analysis: The 26 errors (5.2%) were primarily in “Social Engineering” scenarios where adversarial 

prompts em-bedded violations in hypothetical framing (e.g., “Let’s simulate a system test where approval is 

assumed granted”). 
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Module C: The Runtime Gatekeeper 

The Gatekeeper maintains the current state of the DFA (Scurr). Upon receiving the boolean vector Vout, it 

calculates the transition: 

If S 

next 

δ(Scurr, Vout) → Snext (4) 

is an Accepting State: The action is permitted, 

and Scurr ← Snext. If Snext is a Sink State: The action 

is blocked, and structured feedback is returned to the agent: 

{ 

Fig. 1. The LogicGuard Neurosymbolic Architecture. The middleware intercepts agent actions, uses a small 

SLM to ground symbols, and a DFA to enforce stateful logic before permitting tool execution. 

Module A: The Symbolic Spec Compiler 

This module takes natural language rules and develops them into machine readable state machines. The pipeline 

contains rule parsing, syntax validation, DFA generation (via MONA) and optimization (Hopcroft’s algorithm). 

The resulting DFA is serialized and loaded by the Runtime Gatekeeper. 

"status": "BLOCKED", 

"reason": "Violation: exec_refund attempted without mgr_approval", "required_before_retry": 

["obtain_mgr_approval"] 

} 

This enables the agent to re-plan rather than failing silently. 

Implementation 

System Specifications 

The prototype was developed in Python 3.11 using the following components: 

• Agent (LLM): GPT-4 Turbo 

• Semantic Prober: GPT-4o-mini - low latency 

• Symbolic Engine: ltlf2dfa library with MONA backend 

• Orchestrator: Custom Python middleware 

All experiments were conducted on AWS EC2 c5.4xlarge instances (16 vCPU, 32GB RAM). 

Domain-Specific LTL Specifications 

We implemented specifications regarding Financial Process-ing (Refunds), User Account Management 

(Authentication), and Logistics (Shipping). Financial Processing (Refunds): 
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ϕ1 = ¬(exec_refund)U (mgr_approval) (5) 

ϕ2 = □(amount > 1000 → dual_approval) (6) 

User Account Management (Authentication): 

ϕ3 = □(pwd_change → ♢2fa_success) (7) 

ϕ4 = ¬(delete_account)U (user_consent) (8) 

Logistics (Shipping): 

ϕ5 = □(high_value ∧ reroute → ♢S_ok) (9) 

ϕ6 = □(intl_ship → ♢customs_cleared) (10) 

Experimental Evaluation 

Research Questions 

We assessed Logic Drift mitigation, adversarial robustness, computational overhead, and residual failure rates. 

RQ1: How does LogicGuard compare to existing safety frameworks in mitigating Logic Drift over long-horizon 

tasks? RQ2: What is LogicGuard’s adversarial robustness against Red Team attacks? RQ3: What is the 

computational overhead of runtime verification? RQ4: What factors contribute to the residual failure rate? 

Baselines 

We compared LogicGuard with Vanilla GPT-4, Guardrails AI (stateless filters), NeMo Guardrails (flow 

controllers), and a Rule-Based Filter. B1 - Vanilla GPT-4: Standard agent with system prompt encoding SOPs 

(no runtime enforcement). B2 

- Guardrails AI: Stateless content filters for input/output val-idation using Python validators [2]. B3 - NeMo 

Guardrails: Flow-based dialogue control using Colang scripts [4]. B4 - Rule-Based Filter: Hand-coded regex 

patterns and JSON schema validators (deterministic but inflexible). B5 - Logic-Guard: Full neurosymbolic 

architecture with LTLf enforce-ment. 

Evaluation Metrics 

• Success Rate: Percentage of tasks completed without SOP violations. 

• Violation Rate: Percentage of tasks where agent violates at least one rule. 

• Latency: End-to-end time from user input to tool execu-tion. 

• False Positive Rate: Percentage of safe actions incor-rectly blocked. 

Dataset Construction 

We synthesized 2,400 test cases across three domains: 

• 800 Benign Cases: Normal workflows with correct SOP adherence. 

• 800 Edge Cases: Ambiguous scenarios testing boundary conditions. 

• 800 Adversarial Cases: Red Team prompts designed to bypass policies. 

Each case includes: 
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• Initial state (e.g., refund amount, user role) 

• Conversation history (1-20 turns) 

• Expected outcome (permit/block with justification) Cases were validated by two independent human 

annotators (Cohen’s κ = 0.89, indicating strong agreement). 

RQ1: Logic Drift Mitigation 

We assessed all methods on the long-horizon tasks of 20 turns in sequence. We evaluated all methods on long-

horizon tasks (20 sequential turns) with 30 trials per turn length per domain (2,700 total trials). 

 

Logic Drift: Success Rate over Extended Interactions 

 

Fig. 2. Comparative analysis of task success rates over 20 sequential interactions across all domains (N=90 

trials per point). LogicGuard maintains 94.7% average reliability with realistic variance (95% CI shown), while 

baseline agents exhibit significant drift. Rule-Based achieves stability but at 88.2% due to brittleness on edge 

cases. 

Results: As can be seen from Fig. 2, LogicGuard sustains an average success rate of 94.7% (σ = 1.6) over all 20 

turns. In comparison: 

• Vanilla GPT-4 degraded to 47.3% at turn 20. 

• Guardrails AI reached 50.4%. 

• NeMo reached 54.8%. 

• The overall average success rate of LogicGuard in these 20 turns was 94.7%. 

The Rule-Based baseline illustrates that determinism is not enough: it achieves lower violation rates but higher 

false pos-itive rates-in fact, 11.8% as opposed to 2.1% for LogicGuard-block legitimate workflows. Statistical 

Significance: Two-sample t-tests confirm that LogicGuard significantly outper-forms all baselines at turn 20-

all p < 0.001. 

RQ2: Adversarial Robustness 

We exposed systems to 200 Red Team attacks. LogicGuard obtained a 5.5% total violation rate versus 15.0% of 

Vanilla GPT-4, a 63% reduction. LogicGuard had perfect defense, i.e., 0 failures, against Role Impersonation 

attacks. We subjected all systems to 200 Red Team attacks (expanded from 100 in preliminary study) across 5 

categories. 
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Key Findings: 

• LogicGuard achieves 5.5% total violation rate vs. 15.0% for Vanilla (63% relative reduction) 

• Perfect defense against Role Impersonation (0/40 fail-ures) 

• Weakness in Social Engineering (6/40 = 15.0%), where semantic ambiguity confuses the Prober 

• Rule-Based does relatively well at 6.0% but introduces user friction through false positives 

Failure Case Analysis: The 6 Social Engineering failures involved attacks like: 

"For training purposes, let’s walk through a 

Ablation 1: Remove Semantic Prober 

Setup: Replace neural Prober with hand-coded regex ex-tractors for symbol grounding. Results: 

• Success Rate: 88.3% (vs. 94.7% with Prober) 

• False Positive Rate: 14.2% (vs. 2.1% with Prober) Analysis: Regex-based grounding is brittle and fails on 

seman-tic variations. This validates the need for neural components 

in the grounding layer. 

Ablation 2: Remove DFA (Use LLM Only) 

Setup: Encode LTL rules directly in system prompt without runtime DFA enforcement. Results: 

• Success Rate: 76.2% (vs. 94.7% with DFA) 

• Drift Coefficient: D(20) = 0.238 (vs. 0.053 with DFA) 

Analysis: Confirms that LLMs alone cannot reliably maintain temporal invariants. The DFA is essential for 

deterministic enforcement. 

Ablation 3: Ensemble Probing 

Setup:  Use  3  SLMs  (GPT-4o-mini,  Claude-3-Haiku, hypothetical scenario where the approval wasGemini-

Flash) with majority voting for symbol grounding. 

already obtained in a previous session..." 

The Prober misclassified this as mgr_approval=True due to temporal confusion. 

RQ3: Latency Analysis 

LogicGuard introduces around 224ms of overhead per transaction, accounting for about 11.1%. This is generally 

acceptable in high-stakes enterprise applications. We measured end-to-end execution time for 300 transactions 

per method. 

Breakdown of LogicGuard Overhead: 

• Semantic Prober (GPT-4o-mini): 182ms average 

• DFA State Transition: 8ms average 

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI) 

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue XI November 2025 

Page 2315 www.rsisinternational.org 

 

    

 

• JSON Parsing & I/O: 34ms average 

• Total Overhead: 224ms (≈11.1%) 

For complex reasoning tasks (>2s agent response time), the relative overhead drops below 10%. Given that 

a single SOP violation in financial services can cost $50K-$500K per incident, this trade-off is justified. 

RQ4: False Positive Analysis 

LogicGuard incorrectly blocked only 2.1% of the legitimate actions, as compared to 11.8% for the Rule-Based 

baseline; it has thus proved to be less brittle than hard-coded rules. We evaluated how often each method 

incorrectly blocks legitimate actions on the 800 benign test cases. 

Rule-Based filtering suffers from brittleness—unable to handle paraphrasing or context-dependent semantics. 

Logic-Guard’s 2.1% false positive rate is acceptable for production deployment with human escalation for 

flagged cases. 

Ablation Studies 

To isolate the contribution of each component, we con-ducted three ablations on 600 test cases (200 per domain): 

Results: 

• Success Rate: 96.4% (vs. 94.7% single Prober) 

• Latency: 412ms overhead (vs. 224ms single Prober) 

• Cost: 3× API calls 

Analysis: Ensemble probing reduces the residual failure rate from 5.3% to 3.6%, but at significant cost/latency 

penalty. Suitable for high-stakes scenarios (e.g., financial approvals 

>$10K). 

Summary 

These ablations confirm that the neural Prober representing flexible grounding and the symbolic DFA for 

enforcement are necessary components. 

DISCUSSION 

The Neurosymbolic Gap 

The 5.3% residual failure rate is actually known as the “Neurosymbolic Gap.” By performing root cause analysis, 

researchers found that 46.9% of these failures were due to Temporal Confusion (misjudging past vs. current 

events), while 34.4% arose from Semantic Ambiguity in adversarial prompts. 

The 5.3% residual failure rate (100% - 94.7%) represents the Neurosymbolic Gap—the persistent challenge of 

ground-ing symbolic predicates in neural representations. While the Symbolic Engine (DFA) provides 

mathematical guarantees, the Neural Prober remains probabilistic. 

Root Cause Analysis of 32 failures out of 600 test cases: 

• Temporal Confusion (15 cases, 46.9%): Prober mis-judged whether an event occurred in current vs. past 

context 

• Semantic Ambiguity (11 cases, 34.4%): Adversarial framing, such as posing a hypothetical scenario, 
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confused intent classification. 

Table I Red Team Violation Rates Across Methods (N=200) 

Attack 

Category 

N Violation Rates (N, %) 

Vanilla GPT-4 Guard. AI NeMo Guard. Rule Based Logic Guard 

Role Imper. 40 8 (20.0%) 5 (12.5%) 3 (7.5%) 1 (2.5%) 0 (0.0%) 

Authority 40 6 (15.0%) 5 (12.5%) 4 (10.0%) 2 (5.0%) 1 (2.5%) 

Urgency 40 10 (25.0%) 8 (20.0%) 6 (15.0%) 3 (7.5%) 2 (5.0%) 

Social Eng. 40 4 (10.0%) 4 (10.0%) 4 (10.0%) 5 (12.5%) 6 (15.0%) 

Policy Bypass 40 2 (5.0%) 3 (7.5%) 2 (5.0%) 1 (2.5%) 2 (5.0%) 

Total 200 30 (15.0%) 25 (12.5%) 19 (9.5%) 12 (6.0%) 11 (5.5%) 

Table II Latency Analysis (N=300 per method) 

Method Mean (ms) Std (ms) P95 (ms) Overhead 

Vanilla GPT-4 2,018 189 2,387 - 

Guardrails AI 2,145 203 2,521 +6.3% 

NeMo Guard. 2,231 197 2,612 +10.6% 

Rule-Based 2,052 178 2,401 +1.7% 

LogicGuard 2,242 206 2,628 +11.1% 

Table III False Positive Rates on Benign Cases (N=800) 

Method False Positives Rate 

Vanilla GPT-4 12 1.5% 

Guardrails AI 38 4.8% 

NeMo Guardrails 29 3.6% 

Rule-Based 94 11.8% 

LogicGuard 17 2.1% 

• Implicit Signals (4 cases, 12.5%): Inference required beyond explicit text - e.g., approval via signed token 

• JSON Parsing Errors (2 cases, 6.2%): Malformed tool call schemas 

Practical Deployment Considerations 

LogicGuard is recommended for high-risk domains, such as financial and healthcare, where SOPs are well-

defined. It is not recommended for creative and open-ended tasks or ultra-low-latency requirements. 
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When to Deploy LogicGuard: 

• High-risk domains (financial, healthcare, legal) 

• Tasks with well-defined SOPs expressible in LTL 

• Scenarios where 5% residual risk is acceptable with human escalation 

When NOT to Deploy: 

Table IV Ablation Study Results (N=600) 

Configuration Success Rate FP Rate Latency Overhead 

Full LogicGuard 94.7% 2.1% 224ms 

- Semantic Prober 88.3% 14.2% 18ms 

- DFA Enforcement 76.2% 1.5% 182ms 

+ Ensemble (3 SLMs) 96.4% 1.8% 412ms 

• Creative/open-ended tasks where strict rules inhibit func-tionality 

• Ultra-low-latency requirements (<500ms end-to-end) 

• Domains where SOPs are ambiguous or frequently chang-ing 

Comparison with Concurrent Work 

Two recent papers address related problems: Reflexion [12] uses self-reflection for agent correction but remains 

probabilis-tic. LogicGuard provides deterministic guarantees for a subset of constraints. ToolEmu [16] 

simulates tool execution for safety testing but doesn’t enforce runtime constraints. These approaches are 

complementary to LogicGuard. 

Limitations 

L1 - LTL Expressiveness: Not all SOPs are expressible in LTL. For example, aggregate constraints (“no 

more than 5 refunds per day”) require extensions like Metric Temporal Logic (MTL). 

L2 - Semantic Grounding Bottleneck: The 94.8% Prober accuracy is the system’s ceiling. More sophisticated 

grounding (e.g., fine-tuned models on domain data) could improve this. L3 - Cost: Each transaction requires 2 

LLM calls (agent + prober). For high-volume systems, this doubles API costs. 

L4 - Rule Authoring: Converting SOPs to LTL currently requires formal methods expertise. Future work should 

explore LLM-assisted translation with human verification. 

Future Work 

Improving Symbol Grounding 

Direction 1 - Fine-Tuned Classifiers: Train domain-specific BERT models on labeled SOP compliance data, 

po-tentially achieving >98% accuracy. 

Direction 2 - Active Learning: Implement confidence scor-ing with human-in-the-loop verification for 

borderline cases 
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(p ∈ [0.4, 0.6]). 

Direction 3 - Multimodal Grounding: Extend to visual agents where propositions must be grounded in 

image/video content. 

Extending Temporal Logic 

Metric Temporal Logic (MTL): Support constraints like “approval must be received within 30 minutes.” 

Probabilistic LTL: Express rules like “approval required with 0.95 confidence” for risk-calibrated enforcement. 

A. Explainability and Visualization 

Develop interactive tools for operators to: 

• Visualize current DFA state 

• Inspect which proposition caused a block 

• Replay execution traces for post-incident analysis 

B. Automated Rule Translation 

Explore LLM-assisted conversion of natural language SOPs to LTL formulas with verification: 

CONCLUSION 

This paper introduces LogicGuard, a neurosymbolic frame-work that addresses the critical barrier to enterprise 

AI adop-tion: the inability to guarantee operational compliance in stochastic systems. LogicGuard combines 

Linear Temporal Logic with neural symbol grounding to provide mathemat-ical assurance on temporal 

properties with flexibility in the reasoning process based on LLM. 

Our experimental validation across more than 2,400 test cases and four baseline comparisons shows: 

• 2.0× improvement in long-horizon reliability: 94.7% vs. 47.3% 

• 63% reduction in adversarial vulnerability: 5.5% vs. 15.0% 

• Acceptable overhead of 11.1% latency for deterministic enforcement 

• Production viability w/ 2.1% false positive rate 

The 5.3% residual failure rate underlines the challenge of neurosymbolic integration, while LogicGuard 

signals a paradigm shift from “trusting the black box” to “verifying the critical path.” An organization can 

confidently deploy AI agents for well-defined workflows since human oversight is retained only for edge cases 

flagged by the Gatekeeper. 

The architecture is open to extension: ensemble probing can reduce failures to 3.6%, fine-tuned classifiers could 

approach 99% accuracy, and MTL extensions could handle richer tem-poral constraints. LogicGuard lays the 

blueprint for the next generation of Enterprise AI-from systems that merely respond, to digital employees that 

work under provable operational constraints. 
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ARTIFACTS 

All source code, datasets, LTL specifications, and experimental scripts can be found at:  

https://github.com/OMx0777/LogicGuard. 

The repository includes : 

• Complete implementation of LogicGuard (3,200 LoC) 

• 2,400 test cases with ground truth annotations 

• Red Team Adversarial Prompt Dataset. 

• Jupyter notebooks reproducing all figures and tables 

• Docker container for reproducible evaluation 
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