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ABSTRACT

In recent years, botnet attacks have emerged as one of the most prevalent and sophisticated cybersecurity threats,
exploiting network vulnerabilities to compromise system integrity, confidentiality, and availability. Traditional
security mechanisms, such as signature-based intrusion detection systems, struggle to keep pace with the
dynamic and evolving nature of these threats. This study presents a machine learning-based approach for real-
time detection of botnet activities within wireless network infrastructures. Using the Kaggle Malware Traffic
Analysis Knowledge Dataset (MTA-KDD’19) and the dataset underwent preprocessing procedures including
data cleaning, normalization, transformation, and class balancing using SMOTE. Three machine learning
algorithms such as Decision Tree, Random Forest, and Artificial Neural Network (ANN) which were
implemented and evaluated based on accuracy, precision, recall, and F1-score where the experimental results
revealed that the Random Forest classifier achieved the highest performance accuracy of 99.93%, outperforming
the Decision Tree and Neural Network models. The findings demonstrate that Random Forest provides superior
generalization and robustness in classifying malicious and benign network traffic. The study concludes that
machine learning models, particularly ensemble methods, can significantly enhance proactive threat detection
and serve as a foundation for real-time cyber defence systems against botnet attacks.

Keywords: Botnet Detection; Machine Learning; Random Forest; Decision Tree; Artificial Neural Network
(ANN); Cybersecurity

INTRODUCTION

Over the past few years, cyberspace has seen an upsurge in more advanced attacks, and botnet attacks are one
of the most common attack models applied in the process of committing this criminal offence (Khan and
Mailewa, 2023). A network of computers or devices that are controlled by one individual is called Botnet. These
hacked machines are commonly called bots or zombies, and they can be remotely controlled as they can be
infected with harmful software (Anwar and Saravanan, 2022).

A botnet is mainly used to carry out different coordinated operations by being undetected by the network owners
(Mousavi et al., 2020). The attack used different kinds of malwares, including phishing, worms, Trojan horses,
ransomware and spywares to attack the security of a network and take advantage of the vulnerabilities. Phishing
attacks are carried out through botnets and include misleading strategies to defraud users into giving their
sensitive information, whereas worms and Trojan horses are self-replicatory and maliciously code-carrying.
Ransomware will however encrypt files which it will demand to be paid with and spy ware will monitor and
collect user information discreetly.

A botnet threat has multidimensional effects that may have a devastating effect on the integrity, availability, and
confidentiality of a system. BOTnet threat signs can consist of the presence of an unusual network traffic pattern,
excessive use of bandwidth, slowdowns in the operation of the system without any apparent reason, the
unauthorised access to sensitive information, and the apparatus increase (Joshi et al., 2022). Also, frequent
system crashes, pop-ups, and changed browser settings are also characteristic of possible botnet activity (Lo et
al., 2023). The most appropriate way of addressing risks posed by botnets is to establish a strong cybersecurity
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system, perform a regular security assessment, and train users on the risks of recognising and preventing phishing
attacks and suspicious activities. Early warning and anticipatory action are also essential in reducing the impact
that the threats of botnets can cause (Habor et al., 2021).

Nasir et al. (2023) argue that such classical security measures as encryption, and botnet intrusion detection
systems may not be able to maintain the pace with the dynamicism and variation of such threats. The attackers
also use various tricks that include social engineering, zero-day exploits, and polymorphic malware, and it is
difficult to foresee and prevent security breaches with the help of these tricks. Additionally, Ayo et al. (2023)
found out that the mere number of gadgets linked to networks such as IoT devices under different security
postures create new attack vectors. Security vulnerabilities of IoT devices, the lack of proper authentication
systems, and absence of encryption algorithms provide attackers with the possibility to intrude and breach
systems (Abrantes et al., 2021). These environments are so big and varied that it is hard to impose universal
security controls on all equipment and platforms. Moreover, the safety of data transmission and storage, integrity
of cloud-based programmes, and unauthorised access becomes a significant issue (Nazir et al., 2023).

Organisations require a complex solution to cybersecurity in order to deal with these issues. This involves the
incorporation of the newest threat detection systems, anomaly detection through machine learning algorithms,
and behaviour analytics in detecting patterns that may be indicator of a potential security incident (Ayo et al.,
2023; Ulagwu-Echefu et al., 2021). This is necessary to reduce the effects of attacks and vulnerabilities in real
time, because continuous monitoring and real-time response institutions are required. This study aims at
exploring the different methods used in detection and control of botnet, their areas of weaknesses, and how the
problem can be solved to future threats of botnet by critical infrastructures of the network.

METHODOLOGY

The methodology used for this research is abehavioural driven development approach. The reason was because
it allows for quality assurance in realization of machine learning based projects. In addition, it allows the
integration of ideas from diverse domain experts in interdisciplinary research to help in the realization of the
new system. In achieving this, the steps to be applied are data collection of botnet threat features considering
malware as the threat class. This data upon collection will undergo several processing steps such as visualization,
imputation, normalization and transformation, before transferring into three suitable machine learning
algorithms for training and then generate the model for threat classification.

Data Collection

The Kaggle Malware Traffic Analysis Knowledge Dataset 2019 (MTA-KDD'19) dataset, which has been
updated and improved especially for training and assessing machine learning-based malware traffic analysis
algorithms, is the dataset used for the system's implementation. In the UNSW Canberra Cyber Range Lab, a
realistic network environment was designed in order to build the BoT-IoT dataset. Both regular and botnet traffic
were present in the network environment. The source files for the dataset are offered in a variety of forms, such
as the produced argus files, the original PCAP files, and CSV files. To aid in the tagging procedure, the files
were divided into assault categories and subcategories. Legitimate traffic in the dataset originates from pcap files
classified as Normal in MCFP. These files total more than 7GBytes in size and generated around 40,000 samples.
Malware traffic originates from the MTA repository and consists of almost 4.8 GB of = 2112 pcap files. The
period covered by these observations is June 2013—August 2019. Although it is especially targeted at machine
learning algorithms, the final dataset is not skewed by any one application, and the entire procedure may be
automated to maintain its accuracy.

The dataset consists of network traffic attributes representing a number of different aspects of packet behaviour
and flow properties. The TCP flag distributions (FinFlagDist, SynFlagDist, RstFlagDist, PshFlagDist, and
AckFlagDist) indicate the frequency of occurrence of specific TCP control flags, which can be used to identify
potential patterns of abnormal traffic or an attack pattern. The dominance of various network protocols in the
captured flow is emphasized by the use of protocol-based features like DNSoverIP, TCPoverIP, and UDPoverIP.
Whereas inter-arrival time values (MaxIAT, MinlAT, AvgIAT) are useful in analysing the time differences
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between successive packets, which is useful in determining abnormalities such as denial-of-service attacks,
packet length values (MaxLen, MinLen, StdDevLen, and AvgLen) provide information on the variability of the
traffic.

Other flow-based variables such as FlowLEN, FlowLENrx (data on the total number of the flow and received
flow), and NumPorts (data on the number of the unique ports utilized) provide an overview of connection
dynamics. Several packet-level statistics, such as pktslOratio, 1stPktLen and repeated pkts ratio, may indicate
asymmetric traffic patterns, lost packets or retransmissions. The diversity of communication can be determined
using such characteristics as NumCon (number of connections) and NumIPdst (number of distinct destination
IPs) that are necessary to distinguish between reasonable surfing and potentially malicious activity. Finally, the
label column serves as the classification target of the supervised learning activities, allowing the model to
differentiate between malevolent and benign network flows. Start flow, DeltaTimeFlow and HTTPpkts provide
information that is temporal and protocol specific.

Data Processing

To enhance the applicability of the proposed machine learning algorithms for threat classification, the collected
data is prepared at this step using a variety of techniques. Data cleaning is the initial step in data processing,
which includes identifying missing values, removing rows with missing values, and replacing them with mean
or median values. The z-score standardisation technique is used in the data normalisation process (Deshmukh
and Wangikar, 2011). The scale numerical characteristics are then subjected to data normalisation such that their
range of values is comparable (Amato, 2023). Using One-Hot encoding, data transformation is similarly used to
change categorical variables into numerical values (Samuels, 2024). Additionally, data augmentation is used to
create synthetic examples for the minority classes using SMOTE and balance imbalanced datasets (Alberto et
al., 2018). Finally, data is split into training and testing sets. The ratio of data split adopted in this study is 70:30
which is a common split ratio.

Neural Network

Neural network is a sort of artificial intelligence that seeks to emulate the way a human brain operates. A neural
network functions by establishing connections between processing elements, which are the computer equivalent
of neurones, as opposed to utilising a digital model where all calculations involve manipulating zeros and ones.
The output is determined by the weights and organisation of the links (Islam et al., 2019).

An artificial neural network is a group of interconnected units, also known as neurones, that draws inspiration
from the brain. Neurones can communicate with one another through their connections. The weight or strength
of the signal is determined by a real number value carried by each connection (Islam et al., 2019; Sochima et al.,
2025). The number of artificial neurones, or units, that make up a typical neural network can range from a few
dozen to hundreds, thousands, or even millions. These units are stacked in layers, each of which links to the
layers on either side. Some of them, referred to as input units, are made to take in different types of external
information that the network will try to understand, identify, or process in some other way. Other units, referred
to as output units, are located on the other side of the network and indicate how it reacts to the knowledge it has
acquired. The bulk of the artificial brain is made up of one or more layers of hidden units that are positioned
between the input and output units. The majority of neural networks have complete connectivity, meaning that
every output and hidden unit is linked to every other unit in the layers on either side. A number known as a
weight, which can be either positive (if one unit stimulates another) or negative (if one unit suppresses or inhibits
another), represents the connections between one unit and another. One unit's impact on other increases with its
weight. (This is similar to how real brain cells communicate with each other through microscopic openings called
synapses) (Murphy, 2012; Chidi et al., 2024).

Stepwise of the neural network

The algorithm below outlines the step-by-step process of a feedforward artificial neural network.
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Step 1: initialize the network structure

Define the number of layers

Choose the number of neurons in each layer

Randomly initialize weights and bias for all neurons

Step 2: input data feeding

Provide the input vector to the input layer

These values are passed to the first hidden layer neurons

Step 3: forward propagation

Compute the weighted sum of inputs for each neuron in the hidden layer z = w.x + b

Where Z= weighted sum, b =bias, X = input vector and w = weighted vector apply an activation
function(sigmoid) to get the output of each neuron repeat this for all neurons in the hidden layer the final output
layer receives values from the last hidden layer, processes them and gives the prediction.

Step 4: compute the loss

Compare the predicted output with the actual output use a cross-entropy for classification as loss function
Step 5: backward propagation

Calculate the gradient of the loss with respect to each weight using the chain rule.
Compute how much each neuron contributed to the error.

Propagate the errors backward through the network.

Step 6: Update Weights and Biases

Use an optimization algorithm to update weights

Step 7: Repeat (Train)

Repeat steps 2 to 6 for multiple epochs until the network learns the patterns.

Step 8: Evaluate the Model

After training, evaluate the ANN on unseendata.

Measure performance using accuracy and F1-score.

Step 9: stop

Decision Tree

Fayang (2016) explains that a decision tree is typically a predictive model that is developed based on a tree-time
structure in the machine learning domain. Its inner nodes normally examine a characteristic (characterized by
Liduo, 2016), whereas its outer ones are the final classification. The model is able to tackle many of the
underlying problems (Mingyue, 2016), including optimization issues, multi-step decision-making problems, etc.
It also plays a part in reproducing the process of decision making. Moreover, it is also capable of decomposing
complex processes into a variety of simple decisions (Yanli, 2015), which in its turn can provide a transparent
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overview of the entire decision-making process. A decision tree is simply a tree structure that is used in sorting
out cases.

In the context of machine learning and data mining (Zhiyong in 2015), the complexity of the machine learning
algorithms can become an obstacle in the issue of understanding, and the desire to match these expectations is
not always fulfilled. Nonetheless, decision tree model is a good solution. One of the machine learning algorithms
that are popular is decision tree algorithms. Decision trees are an ever-changing field and, as a result, give rise
to various; several algorithms have been developed. The main point of Classification is to determine to which of
the predefined category an object belongs to. It is not only that classification is a widespread problem, but a basis
to more complicated problems in the making of choices. It is also the most eminent algorithm family of machine
learning and data mining technology (Zhiyong 2015 research).

Stepwise decision tree algorithm
The algorithm below outlines the step-by-step process of a decision tree algorithm
Step 1: Start at the Root Node
1. Evaluate all features in the dataset to determine the best one for the initial split using a splitting criterion.
Step 2: Split the Dataset at the Root
1. Based on the selected feature, divide the dataset into subsets.
2. Create a decision node for each resulting condition or value.
Step 3: Build Subtrees Recursively

For each subset, repeat the process:

1. Evaluate the best feature for splitting.
il. Create a new decision node.
1ii. Split again as necessary.

This forms a subtree, like the left side of your image.
Step 4: Continue Splitting Until a Stopping Condition is Met
Stop splitting if:
1. All samples in the node belong to the same class.
ii. No remaining features to split.
iil. Stopping rule was met
Step 5: Assign Leaf Nodes
Once a node cannot be split further, mark it as a leaf node.
Assign the most frequent class label for classification
Step 6: Repeat the Process for All Branches

Apply steps 3—5 to all branches until the entire tree is built.
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This includes nested decision nodes, like the bottom level of your image.
Step 7: Use the Tree for Prediction
To make a prediction for a new instance:
i. Start at the root.
ii. Follow the decision path based on feature values.
iii. Return the class or value at the reached leaf node.
Step 8: stop
Random Forest

In order to generate hypotheses that aid in decision-making in the future, predictive models are built by
examining the characteristics of predictive factors. By examining the properties of the variables used for
forecasting, predictive models are created, and the outcomes are hypo theses that can be investigated empirically.
The accuracy of these models depends on methods for estimating errors. While predictive data mining uses
supervised machine learning techniques, meta datamining frequently uses unsupervised techniques. Several
decision trees are generated in order to create random forests. This is accomplished by selecting input features
at random and collecting random data samples using Bootstrap samples.

One can arrive at a conclusion considerably faster by removing unnecessary branches. The tree's root no de is
the parent node, and its children are the other nodes. When the main tree is split up, new branches and subtrees
are produced, creating a subtree. The goal variable distinguishes the two main types of decision trees that are
included in machine learning (Salman et al. 2024).

Stepwise random forest algorithm

The algorithm below outlines the step-by-step process of a random forest algorithm

Step 1: Prepare the Dataset

Start with the complete training dataset containing input features and corresponding output labels.
Step 2: Create Multiple Bootstrap Samples

Randomly select multiple subsets of the datato create different training sets for each decision tree. This is known
as bootstrap sampling.

Step 3: Grow Each Decision Tree
For each bootstrap sample, build a decision tree:
1. At each node, choose a random subset of features.
i1. Select the best feature from this subset using a splitting criterion (Information Gain).

iii. Split the data based on that feature and continue recursively until a stopping condition is met (min
samples).

Step 4: Make Predictions with All Trees

To classify a new instance:
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1. Pass the instance through each decision tree in the forest.
ii. Each tree gives a predicted class.

Step 5: Perform Majority Voting

Collect the predicted classes from all trees.

Use majority voting to decide the final class label (i.e., the class with the most votes becomes the final
prediction).

Step 6: Output the Final Class

The class label determined by the majority vote becomes the final predicted class for the input instance.
Step 7: stop

System Implementation

The initial process in the training of machine learning models (random forest, decision tree, and neural network)
is to prepare the data in the Google Collab environment through Python programming language. The first step
in this case is the dataset processing, which involves breaking it down into features (X) and target (y), filling the
blank values, and encoding categorical variables. The normalisation then follows to ensure that the
characteristics are normalised in a similar manner which is essential in models like the neural networks. After
data preparation, a usual split of 70/30 is done to divide the data into training and testing sets. The training data
is then used to train the models and this involves optimising an internal parameter(weights or splits) of the model
to the training data. This is repeated till the model reduces the error or is at an acceptable level of performance.
The implementation area layout is given in Figure 1 in which the algorithms will be trained.
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Figure 1: System Implementation environment
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Assessing the models' performance on the testing set comes next after they have been trained. Metrics like
accuracy, precision, recall, and F1-score are used to evaluate the predictions made by the trained model with the
actual values of the target variable on the test data.

SYSTEM RESULTS

This section presents the comprehensive performance outcomes of the various proposed machine learning
algorithms on proposed dataset.

Results of the Decision Tree Algorithm

The Decision Tree model was a very predictive model with an incredible accuracy rate of 99.99% when applied
on the given data. Another fact that supports this is the classification report as the values of the precision, recall
and F1-score of both classes (0 and 1) are all 1.00(or close to 1). A precision of 100 means that all of the cases
that were predicted to fall into a particular classification were correct and a recall of 100 indicates that the model
could find all cases of every classification correct. It is also equally good in identifying true positives and
deceiving negatives, the F1-score, which is a balance of accuracy and recall is also 1.00.

When trained on highly structured or unbalanced data, decision trees have a tendency to memorise patterns,
which might result in high accuracy on the test set but perhaps poor generalisation to new data. Additional
validation using cross-validation, pruning strategies, or ensemble approaches like Random Forest may be helpful
to guarantee robustness. To ascertain whether the model is indeed generalising successfully, it might also be
helpful to analyse cases that were incorrectly categorised, if any, and assess performance on a different dataset.
The performance accuracy of the decision tree algorithm is presented in Figure 2

Decision Tree Accuracy Over Different Training Set Sizes

1.0000 A

—&— Decision Tree Accuracy < L

0.9995 A

0.9990 A
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0.9985 A

0.9980 A

0.2 0.4 0.6 0.8 1.0
Training Set Size Proportion

Figure 2: Decision Tree Accuracy Results

The classification performance of the Decision Tree model is visually represented by the confusion matrix in
Figure 3. It demonstrates that there were no false positives since the model properly identified 6,062 occurrences
of class 0 and 6,848 cases of class 1. One false negative occurred, though, when a class 1 instance was mistakenly
identified as class 0. This yields a 99.99% total accuracy, demonstrating the model's almost flawless forecasting
power.
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Figure 3: Decision Tree Confusion Matrix

As seen in Figure 3, the model performs exceptionally well in differentiating between the two classes because
there are no false positives (misclassifying class 0 as class 1) and just one false negative. Overfitting, which
occurs when a model memorises patterns unique to a dataset rather than adapting effectively to fresh, unseen
data, is a danger raised by such high accuracy. Techniques like feature significance analysis, cross-validation,
and testing on a separate dataset should be taken into consideration in order to further verify the model. The
performance of the decision tree training outcomes is shown in Table 1.

Table 1: Performance Result of Decision Tree

Metric Class 0 Class 1 Overall
True Positives (TP) 6,062 6,848 12,910
False Positives (FP) 0 0 0

False Negatives (FN) | 1 0 1
Precision 1.00 1.00 1.00
Recall 1.00 1.00 1.00
F1-Score 1.00 1.00 1.00
Accuracy - - 99.99%

Despite these excellent results presented in Table 1, such near-perfect scores may indicate overfitting to the
training data.

Results of the Random Forest Algorithm

With an overall accuracy of 99.93%, the Random Forest model's findings show remarkable performance. As can
be seen in Table 4, the classification report displays precision, recall, and F1-score values of 1.00 for both classes,
suggesting that the model identified almost all occurrences correctly. In particular, the model showed 100%
accuracy and recall for Class 0 (negative cases), which means that neither false positives nor false negatives
occurred. Similarly, for Class 1 (positive instances), the recall score of 1.00 confirms that nearly all actual
positives were identified correctly, with minimal misclassification. The macro and weighted averages also
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indicate balanced performance across both classes, reinforcing the robustness of the model. The Random Forest
performance accuracy over different training set sizes is presented in Figure 4.

Random Forest Accuracy Over Different Training Set Sizes

0.9996 | —®— Random Forest Accuracy
0.9994 -
0.9992 -
0.9990 -
o
o
O 0.9988
<
0.9986 -
0.9984 -
0.9982
0.9980 - ; T T T T
0.2 0.4 0.6 0.8 1.0
Training Set Size Proportion
Figure 4: Random Forest Accuracy Results
Table 2: Performance Results of Random Forest Algorithm
Metric Class 0 (Negative) | Class 1 (Positive) | Macro Avg Weighted Avg
Precision | 1.00 1.00 1.00 1.00
Recall 1.00 1.00 1.00 1.00
F1-Score | 1.00 1.00 1.00 1.00
Support | 6062 6849 12911 12911
Accuracy | 99.93% 99.93% 99.93% 99.93%

Even though Table 2 displays nearly flawless results, this high accuracy might be a sign of overfitting, in which
the model retains patterns from the training set instead of effectively generalising to new data. To make sure the
model is still applicable in practical situations, feature selection or dimensionality reduction strategies might be
investigated if the dataset includes highly correlated features.

Figure 5 displays the Random Forest classifier's confusion matrix, which shows that the model achieves near-
perfect accuracy and performs remarkably well in categorising both classes. 6,058 occurrences of Class 0
(negative cases) and 6,844 instances of Class 1 (positive cases) are accurately classified. Nevertheless, there are
five false negatives (where Class 1 was mistakenly categorised as Class 0) and four false positives (where Class
0 was mistakenly classified as Class 1). The incredibly low error rate indicated by these misclassifications shows
that the model is capable of strong generalisation and successfully separates the two classes.
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Figure 5: Random Forest Confusion Matrix

The existence of false positives and false negatives, as seen in Figure 5, indicates areas where minor
enhancements might be made despite its remarkable performance. While false negatives could result in the loss
of significant cases that ought to have been detected, false positives could result in needless alerts or
interventions. However, the Random Forest model turns out to be a very dependable classifier due to its high
precision and recall values, as well as its overall accuracy of 99.93%. Its performance indicates that it can handle

intricate data patterns with a small error margin.
Results of the Neural Network Algorithm

The ANN algorithm's results show how well a neural network model trained for classification performs. With a
corresponding loss of 0.0079 and an accuracy of 99.87% on the last training session, the model appears to have
learnt to discriminate between classes with a very high degree of precision. The model's good generalisation to
unknown data is confirmed by the total test accuracy of 99.85%, which shows little overfitting. The low loss
number, which indicates low prediction mistakes, lends more credence to the idea that the model is well-

optimized.

Given its high accuracy, the model appears to be quite successful in classifying the input data. But even with
these encouraging outcomes, it's crucial to make sure the model hasn't just internalised the training data. To
verify whether the model is indeed operating as anticipated, more research would be helpful, such as examining
confusion matrices and misclassification rates. Figure 6 displays the neural network implementation's loss and
accuracy curves across 50 epochs.

Loss Curve Accuracy Curve
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B e T
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Figure 6: Loss and Accuracy Curve of the ANN algorithm
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A thorough understanding of the model's performance during training is offered by the loss and accuracy curves
shown in Figure 6. The training and validation losses dramatically drop across the epochs in the loss curve (left),
suggesting that the model is successfully picking up on the patterns in the data. There is little overfitting,
indicating that the model generalises effectively to new data, as seen by the strong relationship between
validation loss and training loss.Both training and validation accuracy increase gradually across the epochs,
approaching 99.85% accuracy on the accuracy curve (right).

The neural network model's confusion matrix offers details about how well it performs in classification. The
model showed a high degree of accuracy by accurately classifying 6832 cases of class 1 and 6059 instances of
class 0. Three false positives, however, occurred when the model predicted class 1 instead of class 0, and
seventeen false negatives occurred when the model predicted class O instead of class 1. The fact that these
mistakes are negligible in relation to the entire sample size indicates that the model's predictions are quite
dependable. The neural network implementation's confusion matrix is displayed in Figure 7.

Neural Network Confusion Matrix

6000
5000

4000

Actual

- 3000

- 2000

- 1000

Predicted

Figure 7: Neural Network Confusion Matrix

With very few misclassifications, the model performs remarkably well, according to the general trend in the
confusion matrix shown in Figure 7. The model may be a little more conservative in forecasting the positive
class since the number of false negatives is somewhat larger than the number of false positives. Nonetheless,
this low misclassification rate is unlikely to have a major influence on the model's efficacy considering its total
accuracy of 99.85%. Techniques like modifying class weights or fine-tuning the classification threshold might
be investigated to further improve the model and lower the tiny percentage of false negatives.

CONCLUSION

The study presents the effectiveness of machine learning techniques for real-time cyber defenceon wireless
networks. By collecting and processing botnet attack data from Kaggle, the study developed and trained three
machine learning models such as Decision Tree, Random Forest, and Neural Network for the detection and
mitigate cyber threats.The study compared their performances in terms of accuracy, precision, recall and F1-
score. The comparative analysis of these models revealed that the Random Forest classifiers achieved highest
performance accuracy and reliability among the other models in detecting malicious activities within the network
infrastructure.

The results underscore the importance of integrating machine learning into cybersecurity frameworks for
proactive threat detection. The recommended random forest model can serve as a foundation for developing a
real-time defence mechanism, improving the security of wireless networks against botnet attacks. Future work
may focus on optimizing these models for large-scale deployments and incorporating adaptive learning
techniques to enhance resilience against evolving cyber threats.

Page 2192 www.rsisinternational.org


https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/

INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI)
ISSN No. 2321-2705 | DOI: 10.51244/1JRSI |Volume XII Issue XI November 2025

“ ARSI ¥

REFERENCES

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Abrantes, R., Mestre, P., & Cunha, A. (2021). Exploring dataset manipulation via machine learning for
botnet traffic. CENTERIS — International Conference on ENTERprise Information Systems / ProjMAN
— International Conference on Project MANagement / HCist — International Conference on Health and
Social Care Information Systems and Technologies 2021.

Anwar, F., & Saravanan, S. (2022). Comparison of artificial intelligence algorithms for IoT botnet
detection on Apache Spark platform. Procedia Computer Science, 215, 499-508.
https://doi.org/10.1016/].procs.2022.12.052

Ayo, F., Awotunde, J., Folorunso, S., Adigun, M., & Ajagbe, S. (2023). A genomic rule-based KNN model
for fast flux botnet detection. Egyptian Informatics Journal, 24(2), 313-325.
https://doi.org/10.1016/1.€15.2023.05.002

Cabello-Solorzano, K., Ortigosa de Araujo, 1., Peia, M., Correia, L., & Tallén-Ballesteros, A. J. (2023).
The impact of data normalization on the accuracy of machine learning algorithms: A comparative
analysis. In P. Garcia Bringas et al. (Eds.), 18th international conference on soft computing models in
industrial and environmental applications (SOCO 2023) (pp. 373-382). Springer.
https://doi.org/10.1007/978-3-031-42536-3 33

CHIDI, E. U.,, UDANOR, C. N., & ANOLIEFO, E. (2024). Exploring the Depths of Visual
Understanding: A Comprehensive Review on Real-Time Object of Interest Detection Techniques.
Preprints. https://doi.org/10.20944/preprints202402.0583.v1

Dai, Y. (2015). Analysis of decision tree algorithm in data mining and its application. Science and
Technology Communication, 7(23), 33-34.

Fernandez, A., Garcia, S., Herrera, F., & Chawla, N. V. (2018). SMOTE for learning from imbalanced
data: Progress and challenges, marking the 15-year anniversary. Journal of Artificial Intelligence
Research, 61, 863—905. https://doi.org/10.1613/jair.5682

Harbor M.C, Eneh LI., Ebere U.C. (2021). Nonlinear dynamic control of autonomous vehicle under slip
using improved back-propagation algorithm. International Journal of Research and Innovation in Applied
Science (IJRIAS); Vol. 6; Issue 9; https://rsisinternational.org/journals/ijrias/Digital Library/volume-6-
issue-9/62-68.pdf

Hou, L. (2016). Application study of decision tree algorithm in engineering quality supervision decision
support system [Doctoral dissertation, Guizhou University].

Joshi, C., Ranjan, R., & Bharti, V. (2022). A fuzzy logic based feature engineering approach for botnet
detection using ANN. Journal of King Saud University — Computer and Information Sciences, 34(8),
6045—-6056. https://doi.org/10.1016/].jksuci.2021.06.018

Khan, S., & Mailewa, A. (2023). Discover botnets in IoT sensor networks: A lightweight deep learning
framework with hybrid self-organizing maps. Microprocessors and Microsystems, 97, Article 104753.
https://doi.org/10.1016/j.micpro.2022.104753

Li, M. (2016). Application of decision tree algorithm in bank telemarketing [Doctoral dissertation,
Huazhong University of Science and Technology].

Li, W. (2014). Application and parallel study of decision tree algorithm [Doctoral dissertation, University
of Electronic Science and Technology]. Advances in Intelligent Systems Research, 161.

Lo, W., Kulatilleke, G., Sarhan, M., Layeghy, S., & Portmann, M. (2023). XG-BoT: An explainable deep
graph neural network for botnet detection and forensics. Internet of Things, 22, Article 100747.
https://doi.org/10.1016/].10t.2023.100747

Mohaiminul, I., Chen, G., & Jin, S. (2019). An overview of neural network. American Journal of Neural
Networks and Applications, 5(1), 7-11. https://doi.org/10.11648/j.ajnna.20190501.12

Mousavi, S., Khansari, M., & Rahmani, R. (2020). A fully scalable big data framework for botnet
detection based on network traffic analysis. Information Sciences, 512, 629-640.
https://doi.org/10.1016/1.ins.2019.10.018

Murphy, K. P. (2012). Machine learning: A probabilistic perspective. The MIT Press.

Nasir, M., Arshad, J., & Khan, M. (2023). Collaborative device-level botnet detection for internet of
things. Computers & Security, 129, Article 103172. https://doi.org/10.1016/j.cose.2023.103172

Nazir, A., He, J., Zhu, N., Wajahat, A., Ma, X., Ullah, F., Qureshi, S., & Pathan, M. (2023). Advancing
IoT security: A systematic review of machine learning approaches for the detection of IoT botnets.

Page 2193

www.rsisinternational.org


https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/
https://doi.org/10.1016/j.procs.2022.12.052
https://doi.org/10.1016/j.eij.2023.05.002
https://doi.org/10.1007/978-3-031-42536-3_33
https://doi.org/10.20944/preprints202402.0583.v1
https://doi.org/10.1613/jair.5682
https://rsisinternational.org/journals/ijrias/DigitalLibrary/volume-6-issue-9/62-68.pdf
https://rsisinternational.org/journals/ijrias/DigitalLibrary/volume-6-issue-9/62-68.pdf
https://doi.org/10.1016/j.jksuci.2021.06.018
https://doi.org/10.1016/j.micpro.2022.104753
https://doi.org/10.1016/j.iot.2023.100747
https://doi.org/10.11648/j.ajnna.20190501.12
https://doi.org/10.1016/j.ins.2019.10.018
https://doi.org/10.1016/j.cose.2023.103172

INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI)
ISSN No. 2321-2705 | DOI: 10.51244/1JRSI |Volume XII Issue XI November 2025

% nsis o

Journal of King Saud University - Computer and Information Sciences, 35(10), Article 101820.
https://doi.org/10.1016/j.jksuci.2023.101820

20. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P, Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., &
Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12, 2825-2830. http://jmlr.org/papers/v12/pedregosal 1a.html

21. Salman, H., Kalakech, A., & Steiti, A. (2024). Random forest algorithm overview. Babylonian Journal
of Machine Learning, 2024, 69—79. https://doi.org/10.58496/BJML/2024/007

22. Samuels, J. A. (2024). One-hot encoding and two-hot encoding: An introduction [Preprint].
ResearchGate. https://doi.org/10.13140/RG.2.2.12345.67890 (Note: Preprint DOI; full publication
pending).

23. Sochima V.E. Asogwa T.C., Lois O.N. Onuigbo C.M., Frank E.O., Ozor G.O., Ebere U.C. (2025)”;
Comparing multi-control algorithms for complex nonlinear system: An embedded programmable logic
control applications; DOI: http://doi.org/10.11591/ijpeds.v16.il.pp212-224

24.Song, Y. Y., & Lu, Y. (2015). Decision tree methods: Applications for classification and prediction.
Shanghai Archives of Psychiatry, 27(2), 130—135. https://doi.org/10.11919/1.issn.1002-0829.215044

25. Ulagwu-Echefu A., Eneh. LI. Ebere U.C. (2021). Enhancing realtime supervision and control of
industrial processes over wireless network architecture using model predictive controller. International
Journal of Research and Innovation in Applied Science (IJRIAS); vol 6; Issue O.
https://rsisinternational.org/journals/ijrias/Digital Library/volume-6-issue-9/56-61.pdf

Page 2194 www.rsisinternational.org


https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/
https://doi.org/10.1016/j.jksuci.2023.101820
http://jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.58496/BJML/2024/007
https://doi.org/10.13140/RG.2.2.12345.67890
http://doi.org/10.11591/ijpeds.v16.i1.pp212-224
https://doi.org/10.11919/j.issn.1002-0829.215044
https://rsisinternational.org/journals/ijrias/DigitalLibrary/volume-6-issue-9/56-61.pdf

