

Unlocking Potential: Vocational Training and Livelihood Enhancement in the Digital Age for Individuals with Disability

¹S. Priyadharsini*, ²Dr. R. Arjunan, S. Harish Kumar³,

¹Research Scholar, Department of Social Work, Bharathiar University, Coimbatore, Tamil Nadu.

²Associate Professor, Department of Social Work, Bharathiar University.

³Research Scholar, Department of Social Work, Bharathiar University, Coimbatore, Tamil Nadu.

DOI: <https://doi.org/10.51244/IJRSI.2025.12110165>

Received: 05 December 2025; Accepted: 15 December 2025; Published: 22 December 2025

ABSTRACT

The digital revolution has profoundly reshaped the global workforce, presenting both unprecedented opportunities and significant challenges for marginalized populations. For persons with disabilities, who have historically faced systemic barriers to employment and economic self-sufficiency, the integration of technology into vocational training offers a transformative pathway toward greater socio-economic inclusion. This literature review synthesizes existing research to explore the impact of digital-age vocational training on livelihood enhancement for the disabled. The paper examines the evolution from traditional training models to technology-enabled frameworks, including e-learning platforms, virtual reality simulations, and the use of assistive technologies that customize the learning experience.

A comprehensive analysis of scholarly articles, case studies, and policy reports reveals several key themes. First, digital training modalities can effectively overcome physical and geographical barriers, providing flexible and accessible learning environments. Second, the literature provides compelling evidence that targeted digital skill development—ranging from basic digital literacy to advanced technical competencies—correlates with improved employment rates, higher income potential, and increased opportunities for entrepreneurship among disabled individuals. However, the review also identifies persistent challenges that mediate these positive outcomes. The digital divide, encompassing a lack of access to affordable technology and internet connectivity, remains a primary obstacle. Furthermore, issues related to the accessibility of training software and the need for pedagogical approaches that are inclusive by design are critically highlighted.

This paper concludes that while technology holds immense potential to unlock the capabilities of disabled individuals, its success is contingent on a multi-faceted approach. Realizing true livelihood enhancement requires not only the provision of training but also the creation of a supportive ecosystem that includes accessible infrastructure, inclusive policymaking, and a commitment from employers to foster diverse workplaces. The review identifies critical gaps in the literature, particularly the need for more longitudinal studies tracking long-term career progression and comparative analyses of different training models. Future research should focus on these areas to build a more robust evidence base for policy and practice.

Keywords: Disability, Vocational Training, Digital Literacy, Livelihood Enhancement, Assistive Technology

INTRODUCTION

The integration of digital technology into vocational training has revolutionized the landscape of employment for individuals with disabilities worldwide. Traditionally marginalized in labor markets due to systemic barriers, inaccessible infrastructure, and societal stigma, persons with disabilities are now increasingly recognized as valuable contributors given the right tools, training, and support frameworks (Pereira et al., 2020; Holt, 2024). As technology continues to permeate all sectors of the economy, digital literacy and technology-enabled training have been cited as critical to bridging gaps in employment and economic participation (Caroline, 2025; Holt, 2024)

India, as one of the world's largest and most diverse democracies, faces particular challenges and opportunities in the push for disability inclusion in the workforce (Vijay, 2024). The Rights of Persons with Disabilities Act (2016) marks a significant legislative milestone, mandating non-discrimination, equal opportunity, and accessible vocational training (India, 2016). However, the effective translation of such policies into practice depends on multidimensional interventions that address the employment, social, technological, and policy environments (Katsui et al., 2024).

Against this backdrop, this article examines the current state and future prospects of vocational training for persons with disabilities in the digital age, analyzing the evolution of training models, emergent digital frameworks, evidence of impact, and persistent challenges. In doing so, it synthesizes global and Indian literature, empirical studies, and policy reviews to provide a comprehensive understanding for scholars, practitioners, and policymakers.

Background of the Study

The onset of the digital age has brought about profound shifts in how work is structured, skills are acquired, and livelihoods are forged. Advances in information and communication technologies, online learning platforms, (Pérez-Escolar, M., & Canet, F. 2022) and assistive devices have opened new pathways for education, training, and employment. Yet these transformations have not been equitable: marginalized populations especially persons with disabilities continue to face substantial barriers to full participation in the digital economy.

Globally, approximately 15 % of the world's population lives with some form of disability, making the issue of inclusion in the digital domain a pressing social justice concern. While technology has the potential to bridge gaps, it can also deepen inequalities when access, design, or pedagogical approaches fail to be inclusive.

One of the most salient structural obstacles is the “digital divide” the gap between those who have meaningful access to digital technologies and those who do not. This divide encompasses disparities in hardware ownership, internet connectivity, digital literacy, and usability of digital platforms. Among persons with disabilities, these gaps tend to be larger than in the general population: for instance, fewer own computers or smartphones, and fewer have home broadband subscriptions. Studies of digital use among persons with disabilities reveal that only about a third may use the internet, with usage strongly conditioned by severity of impairment, education, income, and location. The COVID-19 pandemic further exposed and exacerbated these inequalities: many digital services shifted online without adequate accommodations, leaving people with disabilities more susceptible to exclusion.

In parallel, vocational training systems worldwide have themselves been evolving. Traditional models characterized by in-person classrooms or workshop settings often impose rigid spatial, timing, and accessibility constraints that disadvantage learners with mobility, sensory, cognitive, or geographic limitations. Over the last decade, a growing body of research has examined how technology-enhanced training such as e-learning modules, virtual/augmented reality simulations, interactive multimedia, and adaptive learning systems can expand access and flexibility. These approaches offer promise in customizing pace, modality, and assistive scaffolds for diverse learners.

Specifically for persons with disabilities, the intersection of assistive technologies (e.g. screen readers, alternative input devices, haptic feedback) with inclusive digital pedagogy can create more accessible training ecosystems. Recent literature has begun to investigate how such models enhance vocational inclusion and livelihood outcomes for example, by enabling remote training, reducing transportation burdens, and supporting personalized accommodations. However, the actual translation of these innovations into sustained economic empowerment remains under-explored.

Thus, in the context of rampant digital transformation and persistent exclusion, it becomes vital to understand whether and under what conditions digital-age vocational training can unlock real livelihood gains for persons with disabilities. This exploration must contend not only with technology design, but also with structural factors like policy, infrastructure, employer practices, and pedagogy.

Statement of the Problem

Despite the theoretical promise of digital technologies and inclusive design, several critical challenges and knowledge gaps persist, undermining the full potential of vocational training as a lever for livelihood enhancement among persons with disabilities.

Key problems include:

Persistent digital inequities: Even with declining costs of devices and internet access globally, persons with disabilities remain at a disadvantage in acquiring hardware, connectivity, and digital skills. These disparities act as gatekeepers without reliable access, individuals cannot benefit from digital training.

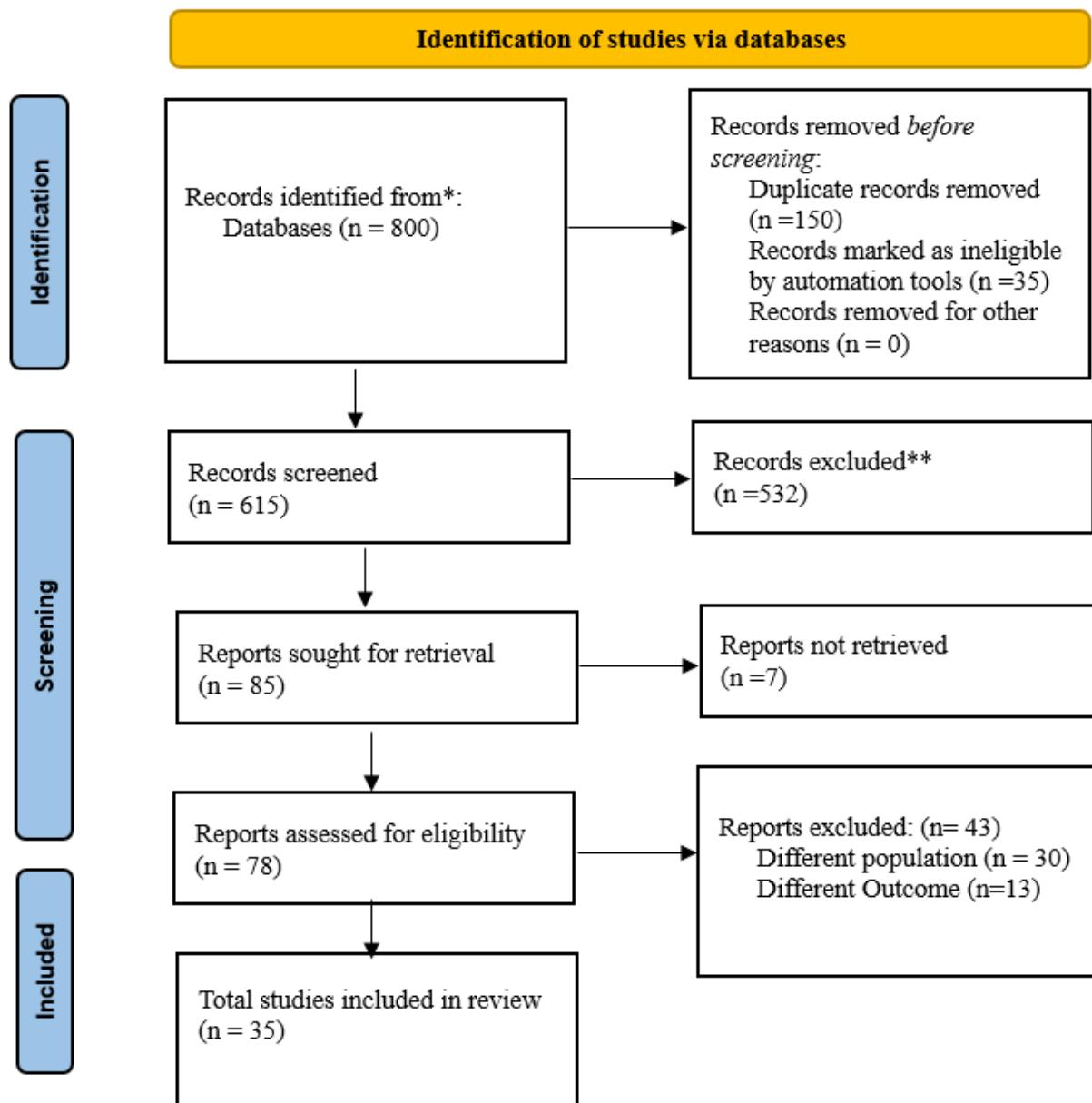
Insufficient accessibility and inclusivity within training systems

Many e-learning platforms, MOOCs, and simulation tools are not designed with universal design principles. Inaccessible interfaces, lack of alternative modes (e.g. captions, screen reading support, keyboard navigation), or rigid pacing all can exclude learners with impairments.

Lack of evidence linking training to sustained livelihood outcomes

While some studies show short-term gains (employment entry, income increases, entrepreneurial experimentation), there is a dearth of longitudinal evidence tracking how digital vocational training affects career progression, job retention, and income trajectories over time.

Heterogeneity of disability and training contexts: Disabilities vary widely in type and severity, and training needs differ across sectors and geographies. What works in one context (e.g. urban, tech-enabled) may not transfer to less-resourced settings or to learners with different impairments. Comparative analyses of models are limited.


Systematic and ecosystem barriers: Even if individuals gain skills, their translation into income depends on enabling environments: accessible infrastructure, supportive employer attitudes, market demand for skills, policy frameworks, and social inclusion. Lack of alignment among these factors can render training ineffective.

Policy and Institutional Gap: Many countries have strategies for disability or digital inclusion, but implementation often lags, particularly in vocational education systems. There is limited coordination between disability rights, digital equity, and workforce development policy domains.

Methodology: Scoping Review Approach

We conducted a **systematic scoping review** to map the breadth of evidence on digital-age vocational training for persons with disabilities. Followed **PRISMA-ScR** guidelines (Tricco et al., 2018) to identify, screen, and select relevant literature. Searched multiple academic databases and grey literature sources; included peer-reviewed articles, case studies, and policy reports. A **PRISMA flow diagram** was used to transparently document the selection process.

PRISMA Flowchart

Traditional Models

Historically, vocational training for persons with disabilities adopted segregated, center-based approaches emphasizing manual trades and repetitive tasks (Majid & Razzak, 2015). These models, while providing basic skills, often failed to promote integration into the mainstream labor market, limiting choices and advancement opportunities (Majid & Razzak, 2015; Vijay, 2024).

A critical review of international best practices reveals that successful vocational systems prioritize barrier-free environments, individualized assessment, adapted teaching, and a market-needs-driven curriculum involving employer partnerships (Majid & Razzak, 2015; United Nations, 2011). Supported employment models—where job coaches offer on-the-job support and workplaces are adapted for inclusion—have demonstrated superior employment and retention outcomes compared to sheltered employment (Beyer, 2016).

Shift Towards Inclusion

In recent years, there has been a paradigm shift towards inclusive vocational models, guided by principles of universal design, rights-based advocacy, and blended learning pathways (Hayes et al., 2017). Policy developments, such as the Indian RPwD Act (2016) and the United Nations Convention on the Rights of Persons

with Disabilities (CRPD), underscore the right to equal opportunity, participation, and accessibility (India, 2016; United Nations, 2006).

The movement toward inclusion has also emphasized the necessity to collaborate with families, employers, disabled persons' organizations, and multidisciplinary teams to create individualized training and employment plans, encompassing both technical and soft skills (Hayes et al., 2017; Vijay, 2024).

Digital-Age Vocational Training Frameworks

Technology-Enabled Learning

Digital technologies such as e-learning platforms, mobile applications, and virtual reality simulations are progressively reshaping vocational training delivery (Damianidou et al., 2018; Michalski et al., 2021; Shin et al., 2024). These technologies provide flexible, self-paced, and location-independent training, greatly reducing barriers for persons with mobility, sensory, or geographical disadvantages (Cheung et al., 2022; Murali et al., 2025).

E-learning courses designed per international accessibility standards (such as WCAG 2.1) ensure that content is perceivable, operable, understandable, and robust for all learners, including those with visual, auditory, or cognitive disabilities (W3C, 2025). Several studies highlight the efficacy of digital literacy programs and e-learning, supporting not only core technical skill building but also employability and self-efficacy (Caroline, 2025; Custodio & Jain, 2025). Popular platforms such as Moodle, Canvas, and ParadisoLMS integrate features for screen readers, video captioning, and alternative content formats, demonstrating best practices in accessible digital training (Paradiso, 2025).

Assistive Technology and Virtual Reality

The use of assistive technology (AT) spans a range of tools such as screen readers, alternative input devices, speech-to-text software, and customized hardware—all of which enable disabled learners to access, interact with, and benefit from digital training (Alshamrani et al., 2024). Virtual Reality (VR)-based vocational training has shown particular promise for experiential learning—providing immersive, risk-free simulations for practicing job-specific tasks, soft skills, and workplace scenarios (Michalski et al., 2021; Wingrave et al., 2013; Shin et al., 2024).

Recent research validates that VR-supported interventions can significantly enhance job performance, retention of skills, and confidence among intellectually and developmentally disabled trainees, with effects transferring to real-world work environments (Shin et al., 2024). AT-supported vocational rehabilitation not only improves functional independence but also consistently correlates with superior employment outcomes, especially when embedded within personalized training pathways (Alshamrani et al., 2024).

Impact on Employment and Livelihood Enhancement

Evidence of Livelihood Gains

Empirical studies overwhelmingly indicate that digital skill development is strongly associated with improved employment rates, higher income potential, and increased entrepreneurship opportunities among persons with disabilities (Venkatesh et al., 2023; Vijay, 2024; Caroline, 2025). Vocational training through digital means enables learners to transcend physical and social barriers, access wider labor markets, and adapt to the changing demands of a technology-driven economy (Cheung et al., 2022). For example, the Hope1000 initiative in India equips rural disabled individuals with devices and entrepreneurial skills, enabling them to establish sustainable digital businesses and access wider community markets (DEF, 2023; Empowerment Foundation, 2023).

Studies conducted during and after the COVID-19 pandemic reveal that persons with disabilities particularly benefited from the widespread adoption of remote work. Digital training was a critical enabler, facilitating transitions to telework, freelancing, and digital entrepreneurship (Ne'eman et al., 2022; Bloom et al., 2024). In the Indian context, however, the employment rate among persons with disabilities remains low (approx. 22.8%)

compared to the general population, reflecting persistent structural and socioeconomic barriers (MOSPI, 2018; SSRN, 2024).

Inclusive Skill Sets

Digital skill literacy is not limited to basic use of technology. Vocational curricula now incorporate skills such as data analysis, customer service via digital channels, online safety, e-commerce, and social media marketing (Venkatesan, 2023). Programs embedding financial, media, and information literacy support holistic livelihood enhancement, enabling sustainable self-employment and resilience during labor market fluctuations (Anh et al., 2024).

Furthermore, soft skills such as teamwork, communication, problem-solving, and adaptive digital competence are strongly linked to sustained employment and career progression, especially in dynamic digital workplaces (Murphy, 2025).

Challenges and Barriers

The Digital Divide

Despite gains, persistent gaps in digital access—referred to as the "disability digital divide"—pose significant barriers to equitable outcomes (Pacheco et al., 2025; Kolotouchkina et al., 2022). People with disabilities are less likely to own digital devices, have reliable high-speed internet, or afford cutting-edge assistive technology. Cost, lack of awareness, limited local infrastructure, and low socio-economic status exacerbate this gap, particularly in low- and middle-income contexts (Borg et al., 2015; CHAI, 2025). Affordability remains the leading barrier to adopting AT and digital training solutions, and government or donor intervention is often necessary to bridge the gap (Murphy et al., 2025).

Accessibility and Inclusive Design

Training platforms and content frequently fall short of established accessibility standards, limiting participation for learners with sensory or cognitive disabilities (W3C, 2025; Caroline et al., 2025). Lack of universal design in pedagogy, insufficient teacher preparedness, and inaccessible devices or resources continue to affect learning quality and outcomes (Hayes et al., 2017; CAST, 2018; Murphy, 2025).

Policy and Implementation Gaps

Although progressive legislation exists, practical enforcement and monitoring are often inadequate. Weak implementation of policies, fragmented services, and a lack of stakeholder coordination reduce the effectiveness and reach of well-intentioned frameworks (Katsui et al., 2024; India, 2016). Inconsistent data collection, low community awareness, and insufficient commitment from employers to actively hire, train, and promote disabled workers further impair inclusion efforts (Vijay, 2024; Holt, 2024).

Creating a Supportive Ecosystem

Achieving meaningful livelihood enhancement for persons with disabilities in the digital era requires a multidimensional, ecosystem-based approach (Hayes et al., 2017; Holt, 2024; Vijay, 2024). This includes:

- **Accessible Infrastructure:** Ensuring digital devices, platforms, and connectivity are available and affordable through public and private partnerships.
- **Inclusive Pedagogy:** Applying Universal Design for Learning (UDL) principles to all training and education material, with iterative feedback and differentiated instruction (CAST, 2018; Tomlinson, 2001).
- **Stakeholder Engagement:** Involving disabled persons' organizations, employers, families, and service providers in program design, delivery, and evaluation.

- **Employer Commitment:** Mainstreaming inclusive hiring, workplace accommodations, anti-discrimination policies, and ongoing professional development (Bonaccio et al., 2019).
- **Career Guidance and Job Coaching:** Providing transition support, mentoring, job coaching, and supported employment for sustainable career progression (Macias et al., 2006; Burns et al., 2008; Coursera, 2025).
- **Mentorship and Networks:** Peer mentorship has proven effective in increasing employment rates, self-advocacy, and professional mobility (CCRW, 2024).

Legislative Frameworks and Enforcement

Stronger inter-ministerial coordination is crucial to standardize enforcement mechanisms of the Rights of Persons with Disabilities (RPwD) Act (2016), as many states have not appointed the mandatory State Commissioners responsible for oversight and grievance redressal (Oxford Human Rights Hub, 2024). Transparency can be enhanced through annual inclusion audits and time-bound compliance reporting by both public and private entities (Drishti IAS, 2025). Introducing fiscal incentives such as tax rebates for accessible workplaces can further promote corporate accountability and inclusion (Seema, 2023; Madan et al., 2024).

Capacity Building and Inclusive Education

Teacher education programs must systematically embed accessibility standards and digital pedagogy training, supported by regular accessibility audits (BarrierBreak, 2025). Partnerships between government, universities, and accessibility experts are key to developing scalable, India-specific frameworks aligned with Universal Design for Learning (UDL) principles (UNESCO IITE, 2025). Strengthening mentorship networks for educators with disabilities can also help embed inclusive teaching practices sustainably (Hayes et al., 2017; Vijay, 2024).

Closing the Digital Divide

In addition to subsidizing assistive technologies, expanding rural digital inclusion hubs with trained human support can bridge last-mile access challenges, particularly for women and low-income persons with disabilities (Drishti IAS, 2025). Partnerships with telecom and technology firms can facilitate affordable broadband access and promote indigenous development of accessible devices (DEF, 2023; CHAI, 2025; Seema, 2023).

Embedding Inclusive Design

Ensuring that every educational platform aligns with WCAG 2.2 accessibility and ICT Standard IS 17802 compliance should become a licensing prerequisite for public procurement and accreditation (Ministry of Education, 2025; Drishti IAS, 2025). Regular accessibility audits and certification can help institutions maintain compliance and create accountability mechanisms across digital ecosystems (BarrierBreak, 2025; W3C, 2025).

Data, Monitoring, and Long-Term Evaluation

National disability data must be harmonized across sectors to track indicators like employment outcomes, course completion rates, and technology adoption (NHFDC, 2024; Shields et al., 2022). Strengthening multi-level monitoring through cross-ministerial data integration and community feedback loops can ensure real-time progress evaluation (Sol's ARC, 2024). Establishing a centralized Monitoring, Evaluation, and Learning (MEL) framework at the national level, with state-specific disability observatories, can institutionalize transparency and evidence-based policymaking.

Gaps in Literature and Future Directions

While current evidence highlights positive associations between digital vocational training and livelihood enhancement, several critical gaps persist (Caroline et al., 2025; Holt, 2024; Vijay, 2024). Notably, there is a lack of longitudinal studies tracking long-term employment and career progression, especially in low- and middle-income countries (Shields et al., 2022). Comparative analyses of various training delivery models,

effectiveness of specific technologies (e.g., VR vs. conventional e-learning), and culturally adapted frameworks for diverse disability groups are sparse (Shin et al., 2024; Cheung et al., 2022).

Research on the cost-effectiveness of assistive technology deployment, employer perspectives on digital training graduates, and the role of intersectionality (gender, urban/rural, type of disability) also warrant deeper exploration (Borg et al., 2015; Murphy, 2025). Cross-sectoral studies connecting inclusive education, lifelong learning, and workplace practice could further inform systems-level change (Caroline, 2025; Vijay, 2024).

CONCLUSION

Technology has unlocked new possibilities for persons with disabilities, offering flexible, accessible pathways to vocational training and sustainable livelihoods. While empirical evidence confirms that digital skill development enhances employability, income potential, and entrepreneurship, realizing the full promise of digital-age vocational training requires coordinated efforts at every level—policy, infrastructure, pedagogy, and practice. Persistent barriers such as the digital divide, accessibility gaps, and weak policy enforcement remain challenges but are not insurmountable. Future research and policy must focus on long-term impacts, scalable models, and inclusive design to ensure that no one is left behind in the digital workforce transformation.

REFERENCES

1. Academia Research Group. (2025). How virtual reality is transforming vocational rehabilitation. Retrieved October 16, 2025, from <https://academia.co.uk/how-virtual-reality-is-transforming-vocational-rehabilitation/>
2. Alshamrani, K. A., et al. (2023). Assistive technology services for adults with disabilities in vocational rehabilitation programs: A scoping review. *Disability and Rehabilitation: Assistive Technology*. <https://doi.org/10.1080/17483107.2023.2181413> [PMCID: PMC8292897] <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8292897/>
3. Anand, R., & Menon, T. (2024). Disability inclusion in Indian workplaces: Mapping the research terrain. *Indian Journal of Social Work*, 85(2), 115–140. <https://doi.org/10.1016/S0970389624000041>
4. Articulate Community. (2010). Understanding WCAG: A quickstart guide for e-learning developers. Retrieved October 15, 2025, from <https://community.articulate.com/blog/articles/understanding-wcag-a-quickstart-guide-for-e-learning-developers/1097235>
5. Asian Productivity Organization. (2025). Enhancing disability-inclusive employment policies in Asia. https://www.apo-tokyo.org/wp-content/uploads/2025/05/Enhancing-Disability-Inclusive-Employment-Policies-in-Asia_PUB.pdf
6. Baxter, S., et al. (2024). Understanding interventions and outcomes in supported employment and individual placement and support: A qualitative evidence synthesis. *Disability and Health Journal*. <https://doi.org/10.1016/j.dhjo.2024.101374>
7. Beyer, S., Goodere, L., & Kilsby, M. (2023). The opportunities and barriers of different employment models for persons with disabilities across the European Union. European Association of Service Providers for Persons with Disabilities (EASPD). https://easdpeu.fileadmin/user_upload/Publications/s.beyer_report_-opport_and_barriers_of_diff_employment_models_final.pdf
8. BarrierBreak. (2025). ADA Compliance for Educational Institutions: Why Accessibility is Critical. Barrier Break. <https://www.barrierbreak.com/ada-compliance-for-educational-institutions-why-accessibility-is-critical/>
9. Borg, J., Lindström, A., & Larsson, S. (2015). The right to assistive technology: For whom, for what, and by whom? *Disability & Society*, 26(2), 151–167. <https://doi.org/10.1080/09687599.2011.544004>
10. CAST. (2018). Universal Design for Learning Guidelines, Version 2.2. CAST. <https://udlguidelines.cast.org/static/udlg2.2-text-all1y.pdf>
11. Canadian Council on Rehabilitation and Work. (2024). How VR is transforming the way we train job seekers with disabilities. CCRW. <https://ccrw.org/how-vr-is-transforming-the-way-we-train-job-seekers-with-disabilities/>

12. Canhete Pereira RM, Monteiro I. Vocational rehabilitation and return to work: integrative review. *Rev Bras Med Trab.* 2020 Apr 15;17(3):441-455. doi: 10.5327/Z1679443520190350. PMID: 32368678; PMCID: PMC7195892.
13. Caroline, A., Coun, M. J. H., Gunawan, A., & Stoffers, J. (2024). A systematic literature review on digital literacy, employability, and innovative work behavior: Emphasizing the contextual approaches in HRM research. *Frontiers in Psychology*, 15, Article 1448555. DOI 10.3389/fpsyg.2024.1448555
14. CHAI. (2025). Assistive Technology Access in India: Annual Report 2025. Clinton Health Access Initiative. https://chai-india.org/wp-content/uploads/2025/10/annual_2025.pdf
15. CIPHR Learning. (2024). Creating WCAG-compliant eLearning. Retrieved October 15, 2025, from <https://www.ciphr.com/blog/wcag-compliant-elearning>
16. Cypher Learning. (2024). Top 6 LMS compliance features for building accessible e-learning courses. Retrieved October 15, 2025, from <https://www.cypherlearning.com/blog/business/lms-features-for-accessible-e-learning-courses>
17. Damianidou, D., Arthur-Kelly, M., Lyons, G., & Wehmeyer, M. L. (2018). Technology use to support employment-related outcomes for people with intellectual and developmental disability: An updated meta-analysis. *International Journal of Developmental Disabilities*, 64(2), 95–110. <https://doi.org/10.1080/20473869.2017.1396795> [PMCID: PMC8115596] <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8115596/>
18. Digital Empowerment Foundation. (2023). Project Report: Samarth Soochna Preneur. DEF. <https://www.defindia.org/wp-content/uploads/2023/07/Project-Report-Samarth-SoochnaPreneur-1.pdf>
19. DEF. (2023). Rural Digital Empowerment in Disability Inclusion. Digital Empowerment Foundation. Drishti IAS. (2025). Enhancing PwD Inclusion in India.
20. Easygenerator Blog. (2025). E-learning accessibility: Why it matters & best practices. Retrieved October 15, 2025, from <https://www.easygenerator.com/en/blog/e-learning/elearning-accessibility/>
21. Government of India. (2016). The Rights of Persons with Disabilities Act, 2016 (Act No. 49 of 2016). Ministry of Law and Justice, India. https://www.indiacode.nic.in/bitstream/123456789/15939/1/the_rights_of_persons_with_disabilities_act_2016.pdf
22. Hayes, A. M., & Bulat, J. (2017). Disabilities inclusive education systems and policies: A guide for low- and middle-income countries. In A. M. Hayes & J. Bulat (Eds.), *Inclusive education systems* (pp. 1–104). World Bank. <https://www.ncbi.nlm.nih.gov/books/NBK554622/>
23. Hayes, A. M., et al. (2017). Inclusive education: Policy and practice. Commonwealth Secretariat. <https://thecommonwealth.org/sites/default/files/Publications/Publications/Inclusive%20Education%20Policy%20and%20Practice.pdf>
24. Holt, S., Osborne-Martin, E. and Scott, S. (2024), Disability inclusion in the workplace: A conversation on equity for disabled employees within the university publishing sphere. *Learned Publishing*, 37: e1642. <https://doi.org/10.1002/leap.1642>
25. India. (2016). The Rights of Persons with Disabilities Act, 2016. Government of India. https://www.indiacode.nic.in/bitstream/123456789/15939/1/the_rights_of_persons_with_disabilities_act_2016.pdf
26. Jee, S., & Lim, H. (2022). Virtual reality-based multiple life skill training for intellectual disability: A pilot randomized controlled trial. *Journal of Vocational Rehabilitation*, 57(2), 113–125. <https://doi.org/10.1016/j.jvrehab.2022.04.002>
27. McGrenere, J., Baecker, R. M., & Booth, K. S. (2015). A survey of web accessibility for older users. *ACM Transactions on Accessible Computing (TACCESS)*, 7(3), 1–43. <https://doi.org/10.1145/2769493.2769592>
28. Majid, A., & Razzak, N. (2015). Designing a model of vocational training for persons with disabilities. *International Journal of Technical and Vocational Education*, 2(3), 215–230. <https://dergipark.org.tr/tr/download/article-file/155687>
29. Meijer, L., & Jensen, P. (2025). Factors related to digital literacy in people with disabilities: A systematic review and meta-analysis. *Computers in Human Behavior Reports*, 12, 100234. <https://doi.org/10.1016/j.chbr.2025.100234>

30. Navas-Bonilla, C. del R., Guerra-Arango, J. A., Oviedo-Guado, D. A., & Murillo-Noriega, D. E. (2025). Inclusive education through technology: A systematic review of types, tools and characteristics. *Frontiers in Education*, 10, 1527851. <https://doi.org/10.3389/feduc.2025.1527851>

31. National Institute for Empowerment of Persons with Disabilities. (2025). The Rights of Persons with Disabilities (RPwD) Act, 2016 – Overview. Ministry of Social Justice and Empowerment, India. <https://niepvd.nic.in/the-rights-of-persons-with-disabilities-rpwd-act-2016/>

32. Oxford Human Rights Hub. (2024). India's Rights of Persons with Disabilities Act 2016: An Unfulfilled Promise. <https://ohrh.law.ox.ac.uk/indias-rights-of-persons-with-disabilities-act-2016-an-unfulfilled-promise/>

33. Paradiso Solutions. (2025). Top LMS platforms for accessibility learning. Retrieved October 15, 2025, from <https://www.paradisosolutions.com/blog/top-lms-platforms-for-accessibility-learning/>

34. Pant, N., & Sharma, A. (2024). Equity initiatives for sustainable development: A comparative study of affirmative action in the USA and India. *Social Sciences & Humanities Open*, 10, 101102. <https://doi.org/10.1016/j.ssa.2024.101102>

35. Pérez-Escolar, M., & Canet, F. (2022, February 2). Research on vulnerable people and digital inclusion: Toward a consolidated taxonomical framework. *Univers Access in the Information Society*. <https://doi.org/10.1007/s10209-022-00867-x>

36. Sacristán, A. I., et al. (2022). Advanced strategies for enhancing e-learning accessibility and usability. *Digital Education Review*, 42, 67-89. <https://doi.org/10.1344/der.49290>

37. Seema, R. (2023). A Comprehensive Review of Disability Inclusion in the Indian Economy. *IISPRR Journal of Policy Research*. <https://iisppr.org.in/a-comprehensive-review-of-disability-inclusion-in-the-indian-economy/>

38. Shields, C., et al. (2022). Inclusive Evaluation in Digital Learning Environments. *Frontiers in Education*, 7. <https://doi.org/10.3389/feduc.2024.1447489>

39. <https://www.frontiersin.org/journals/education/articles/10.3389/feduc.2024.1447489/full>

40. Shin, H., & Lee, J. (2024). Effect of virtual intervention technology in vocational rehabilitation for people with disabilities: A systematic review. *International Journal of Human–Computer Interaction*, 40(2), 158-172. <https://doi.org/10.1080/10447318.2022.2121560>

41. Thomas, G., & Mishra, A. (2023). Prioritising re-employment skills training for people with disabilities: A global perspective. *Journal of Vocational Education & Training*, 75(6), 821–838. <https://doi.org/10.1080/13639080.2023.2254271>

42. United Nations Development Programme. (2022). Inclusive vocational education and training for persons with disabilities in Albania (Evaluation report). UNDP. <https://www.undp.org/sites/g/files/zskgke326/files/2022-05/Inclusive%20vocational%20education%20and%20training%20for%20persons%20with%20disabilities%20in%20Albania%20-%20English.pdf>

43. United Nations India. (2023). UN India and disability rights. <https://india.un.org/en/286225-un-india-and-disability-rights>

44. Venkatesan, S. (2023). Digital literacy in people with disabilities: An overview and narrative review. *Global Journal of Arts Humanities and Social Sciences*, 3(12), 1475-1494. <https://doi.org/10.5281/zenodo.10434058>

45. Vijay, S., & Rao, M. (2023). Vocational skill training programs for persons with disabilities: An integrative review. *Work: A Journal of Prevention, Assessment & Rehabilitation*, 75(1), 45–58. <https://pmc.ncbi.nlm.nih.gov/articles/PMC10866252/>

46. Vocational Education and Training Authority of Australia. (2004). Designing a model of vocational training programs for persons with disabilities. <https://www.voced.edu.au/content/ngv:69690>