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ABSTRACT

Human Activity Recognition (HAR) is a vital research area with applications in healthcare, security, and
intelligent environments. This paper presents a hybrid framework that combines traditional feature engineering
with deep learning to enhance HAR performance. It leverages the Histogram of Oriented Gradients (HoG) for
spatial feature extraction and Support Vector Machines (SVM) for structured classification. Additionally, Vision
Transformers (ViT) and ResNet architectures are integrated to improve accuracy: ViT captures global
dependencies through attention mechanisms, while ResNet enhances deep feature learning through skip
connections. Experimental results demonstrate that this approach balances computational efficiency,
interpretability, and high accuracy on large datasets.

Keywords: Human Activity Recognition (HAR), Histogram of Oriented Gradients (HoG), Support Vector
Machines (SVM), Vision Transformers (ViT), ResNet, Deep Learning.

INTRODUCTION

Human Activity Recognition (HAR) has become a pivotal research area owing to its wide-ranging applications
across multiple fields, including healthcare, surveillance, and smart environments. This area of study is essential
for understanding human behavior, driving automation, and the development of intelligent systems capable of
adapting dynamically to changing conditions and responding appropriately [1-2]. In recent years, the integration
of machine learning (ML) and deep learning (DL) techniques has revolutionized HAR by allowing systems to
learn intricate patterns and complex features directly from raw, unprocessed data. This shift has enhanced the
accuracy and robustness of activity recognition models, making them more versatile and scalable. Among these
advancements, Support Vector Machines (SVM) combined with Histogram of Oriented Gradients (HoG), as
well as deep learning architectures like ResNet and Vision Transformers (ViT), have gained prominence. HoG
is widely used for extracting spatial features from video frames, while deep learning models such as ResNet and
ViT offer superior feature learning capabilities. ResNet’s residual blocks mitigate the vanishing gradient
problem, allowing deeper networks to capture intricate spatial and temporal dependencies in human activities
[3-7].

ViTs, on the other hand, treat images as sequences of patches, leveraging self-attention to capture local and
global dependencies, making them particularly effective for complex datasets [8-10]. This paper proposes a
hybrid framework that integrates HoG+SVM with ResNet and ViT to achieve robust and efficient HAR. By
combining the interpretability and computational efficiency of traditional methods with the powerful learning
capabilities of deep learning, our approach addresses real-world challenges such as variations in pose, scale,
illumination, and occlusions. Although HoG+SVM s lightweight and interpretable, it struggles with large and
complex data sets. In contrast, deep learning models excel in accuracy but require significant computational
resources and labeled data. Our hybrid approach leverages the strengths of both techniques to provide a balanced
and scalable solution for HAR applications.
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LITERATURE REVIEW

Human Activity Recognition (HAR) has evolved significantly with advances in preprocessing, feature
extraction, and classification techniques. Traditional approaches relied on hand-crafted features and classical
machine learning models, but recent deep learning architectures have improved accuracy and adaptability. This
section reviews key methodologies and situates our hybrid framework within the existing literature [11-25].

Preprocessing techniques are used to improve the quality of input data by removing noise, reducing
dimensionality, and optimizing feature extraction. Various preprocessing techniques have been explored in HAR
research to enhance the robustness of models. To prevent overfitting, Mekruksavanich et al. (2021) implemented
10-fold cross-validation, ensuring that the model generalizes well to unseen data. This method systematically
partitions the dataset, training and validating on different subsets, improving overall reliability [11]. Ankita et
al. (2021) applied a Gaussian blur in HAR tasks to smooth images, reduce high-frequency noise, and enhance
feature clarity. This step is particularly useful for feature-based methods like Histogram of Oriented Gradients
(HoG)[12].  Zhang et al. (2022) highlighted the benefits of augmenting training data by introducing
transformations such as rotation, flipping, and scaling. This approach mitigates data scarcity issues and improves
the generalization of deep learning models [13]. Xu et al. (2023) showed that grayscale conversion reduces
computational complexity while preserving critical spatial information, making it a widely used preprocessing
step in image-based HAR [14]. While these studies focus on individual preprocessing techniques, our approach
integrates cross-validation, Gaussian blur, data augmentation, and grayscale conversion to maximize efficiency.
This ensures that our hybrid model processes input data effectively, improving feature extraction and
classification performance.

Feature extraction impacts the system’s ability to capture meaningful data. Khan et al. (2024) method leverages
multiple viewpoints in dynamic environments. The study explores the effectiveness of this fusion in addressing
challenges like occlusion and varying perspectives [15]. Dua et al (2021) effectively capture both spatial and
temporal dependencies. Their approach demonstrated improved recognition accuracy by integrating CNN Gated
Recurrent Units (GRU) for sequential pattern learning [16]. Muhammad et al. (2021) presented attention
mechanisms with dilated convolutions that improve the accuracy [17]. Xiao et al. (2021) approach improves
model accuracy by efficiently extracting relevant features while maintaining data privacy across decentralized
devices. The study demonstrates the potential of federated learning in enhancing activity recognition
performance in distributed sensor networks [18]. While these studies focus on deep learning-based methods like
CNN-GRU, attention-based LSTM, and federated learning, which require high computational power, large
datasets, and extensive training, our proposed HoG is computationally efficient and interpretable, and it
effectively captures information related to edges and gradients.

Classification algorithms play a pivotal role in distinguishing between various human activities. Al-Qaness et
al. (2022) enhance feature extraction by leveraging residual connections and attention layers, improving
recognition accuracy. The approach effectively captures intricate spatial-temporal dependencies, making it
suitable for complex activity patterns [19]. Wang et al (2019) used deep learning to extract hierarchical spatial
features, making them effective for HAR tasks that require fine-grained recognition. Their convolutional layers
are well-suited for processing visual data and capturing local patterns like edges and textures [20]. Hussain et al
(2022) used Vision Transformers to employ global dependencies in input data. Unlike CNNSs, which focus on
local patterns, ViTs analyze the entire image context. This makes them particularly effective for HAR tasks
involving relationships between distant regions in images. [21]. Trujillo et al (2023) integrate CNNs and ViTs
to create a complementary system where CNNs handle local feature extraction, and ViTs provide global
contextual understanding. This synergy ensures comprehensive activity recognition, improving performance
compared to using either architecture alone [22]. Ronald et al (2021) used ResNet, and its ability to extract highly
abstract features is particularly beneficial for recognizing subtle variations in activity patterns. They proposed
iISPLInception, a deep learning architecture combining Inception and ResNet models for human activity
recognition [23]. Tang et al. (2022) introduced a triple cross-domain attention mechanism for human activity
recognition using wearable sensors. Their method focuses on improving model performance by effectively
capturing and integrating information from multiple domains, such as spatial, temporal, and sensor data [24].
Tang et al. (2022) proposed a multiscale deep feature learning approach for human activity recognition using
wearable sensors. Their method leverages multiple scales to capture diverse features from sensor data, improving
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recognition accuracy [25]. Muksimova et al. (2025) proposed a Cross-Modal Transformer-based approach for
streaming dense video captioning; leveraging Neural ODE for a precise temporal method enhances video
understanding by effectively capturing spatial-temporal dependencies.

Proposed HAR Model

In this study, an integrated approach of traditional and Deep Learning methods with enhanced Feature Extraction
is proposed to handle the Human Activity Recognition system. Figure 1 summarizes our proposed model, starting
with data collection. In this work, the Stanford 40 Action Dataset is collected, and its description is shown in
Table A(appendix ). Next phase, the important features are identified using the HOG approach and CNN.
Further, the selected features from the HOG method are given to the traditional SVM classifier, and the selected
features from the CNN method are given to the vision transformer to classify the human activity recognition.
This hybrid method has three variants, such as SVM + HoG Approach, CNN+Vision Transformer, and Resnet
Models.

Figure 1: Proposed HAR Framework

Data Collection: Stanford 40 Action Dataset

|

Feature selection: HoG, CNN methods

|

The subset of features are classified by

[Cus’[omizedHoG+SVM :| [ Customized CNN+VIT ] Customized ResNet

Evaluation: Accuracy, Precision, Recall, F1-score

Data Collection and Partitioning

We selected the Stanford 40 Actions Dataset [28] for this study due to its lower noise levels, as it contains fewer
third-party elements in the background compared to other datasets, ensuring a clearer focus on the primary
subject. Additionally, it offers a diverse set of 40 human actions with a well-balanced number of samples per
category, making it suitable for robust and generalizable Human Activity Recognition (HAR) models. This
dataset strikes a balance between real-world complexity and controlled variability, allowing for effective feature
extraction and classification. The Dataset contains images of varying sizes. However, the average image size in
this dataset is approximately 300 x 200 pixels, and it also has bounding boxes that specify the location of the
person acting in each image. These annotations help in localizing the subject, enabling precise action recognition
in HAR, and Figure 2 represents a few sample images from the dataset, which consists of 9532 images with
5,532 samples used for training and the remaining 4,000 samples reserved for testing.

Figure 2: A few sample images from the dataset

el N = e
Playing violin (b) Applauding
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HoG-based Feature selection

Histogram of Oriented Gradients (HoG) is one of the widely used feature extraction techniques for human
activity recognition. It effectively captures gradient and edge information, making it suitable for object detection
and recognition tasks. The HoG descriptor works by computing the gradient orientations of an image and
constructing histograms based on these orientations in localized regions of the image. The process of computing
HoG features involves the following key steps:

Gradient Computation: To detect edges and changes in intensity, the image gradient is computed using
derivative operators. Typically, the Sobel filter is used to approximate gradients in the horizontal and vertical
directions.

Orientation Binning: The image is divided into small spatial regions known as cells (e.g., 8 x 8 pixels). Each
pixel within a cell contributes to a histogram based on the orientation of its gradient. The orientation space is
quantized into bins (typically 9 bins spanning 0° to 180°). The contribution of each pixel to the histogram is
weighted by its gradient magnitude. For a given cell with pixel indices i, j, the histogram bin corresponding to
the gradient orientation is updated as follows:

Hbo = Hb + G(i, j)

Block Normalization: To enhance robustness against illumination changes, normalization is applied over blocks
(e.g., 16 x 16 pixels consisting of multiple 8 x 8 cells). This ensures that the feature representation is invariant
to lighting and contrast variations. Let v be the feature vector of concatenated histograms from all cells in a
block. The normalization is performed using one of the following methods, and this normalization step ensures
that features remain stable under different illumination conditions.

L2-norm normalization:

U
/ .;,||2 P

Where € is a small constant which is used to prevent division by zero.

.‘,lf —

L1-norm normalization:

o'

v
Slvl+e

Final Feature Vector Representation: The final HoG feature vector for an image is obtained by
concatenating the normalized histograms from all blocks:

FHoG = [H1, H2... HN]

Where Hi represents the normalized histogram from the it" block. Figure 3 represents the HoG techniques
extracted image of Applauding action, and Algorithm 1 shows the pseudo-code for feature extraction steps
in this study. These steps enhance the accuracy and efficiency of the recognition model. At the same time,
this technique has another important drawback: it suffers from high sensitivity to changing pixel intensity.

Figure 3: HoG Image of Applauding action

HOG Image 1
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Such factors, caused by environmental variation, illumination, or noise, significantly affect the accuracy of
features extracted and later influence the classification models being developed. The inherent dependence of
HOG on intensity gradients indicates the necessity for more robust techniques for feature extraction that can
mitigate intensity variations.

CNN-based Feature selection:

CNNs constitute the essence of the feature extraction step. Their hierarchical structure, along with their
ability to learn abstract representations, makes them perfect for extracting necessary features from
preprocessed images. The process starts at the convolutional layers, where low-level features, such as
edges, lines, and textures, are detected. Going deeper, the CNN continues to capture more complex,
abstract patterns in the shape and structural relationship that depict human activity. It extracts hierarchical
features by applying filters at different levels, and we used ReLU activation, Max pooling, and Soft Max
for final classification.

Classification Techniques

Classification algorithms play a pivotal role in distinguishing between various human activities. Traditional
methods and modern approaches like deep learning architectures (ResNet, CNN, and ViT) have been
extensively explored.

HoG features given to SVM (HoG+SVM)

The application of HoG along with the SVM approach is very strong for HAR, ensuring the benefits of
both. The workflow of HoG + SVM involves the following steps:

e Grayscale Conversion: Converts the image to grayscale, enhancing efficiency by lowering
computational cost and minimizing noise.
e Feature Extraction (HoG): Calculates gradient magnitude and direction, normalizes the histogram, and
concatenates the data to create a robust feature vector.
e Classification (SVM): Classifies activities by finding the optimal hyperplane that separates different activity
classes.
Due to its ability to capture local spatial gradients, the HoG method, combined with SVM’s capability to classify
these features in a high-dimensional hyperplane, is effective. However, issues arise, particularly regarding
sensitivity to intensity variations and the computational complexity when handling large datasets.

Algorithm 1 Feature Extraction Steps

1: procedure PREPROCESS_ IMAGE (image)

2. Convert to grayscale
3 Apply Gaussian blur
4. Resize to target size
5 return preprocessed image

6: end procedure

7. procedure EXTRACT Hog- FEATURES (image)

8: Preprocessed_ Image - Preprocess_ Image (image)

9 Compute gradients of Preprocessed_Image

10:  Divide Preprocessed_Image into cells

11:  Compute HoG histograms

12:  return HoG features

13: end procedure

14: procedure EXTRACT- CNN FEATURES(image, cnn_model)
15:  Preprocessed Image — Preprocess_image(image)

16:  Features — CNN model. Extract features(Preprocessed Image )
17:  return features

18: end procedure
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CNN features given to VIT

The application of CNN, along with the Visual Transformer approach, is very strong for HAR, ensuring the
benefits of both. The proposed pipeline for CNN-VIT is structured as below,

e Grayscale Conversion: This simplifies the input, where only intensity variations will now be present,
reducing any color noise.

e Gaussian Blur: A low-pass filter that filters off high-frequency noise, smoothing the image and promoting
stabilization of the features, together with better extraction of features.

e CNN Feature Extraction: Extracts hierarchical features from preprocessed images, reduces dimensionality
to preserve critical activity information.

e VIiT Classification: Processes CNN features using attention mechanisms to learn global and local
dependencies, classifying human activity with high accuracy

This attention mechanism is to focus on relevant regions of the image while ignoring irrelevant or noisy
background details, as shown in Figure 4 for the image Applauding action.

Rationale for a Custom ResNet

The traditional ResNet models are deep networks that have been successful in a variety of image recognition
tasks. These models typically consist of hundreds of layers and use pre-trained weights obtained from large
datasets. However, such architectures can be too large for human activity recognition tasks, especially when the
dataset is smaller or more specific. The complexity of using a full ResNet model is due to its size, which leads
to high computational cost, longer training times, and potential overfitting when applied to smaller datasets. This
will result in a lightweight ResNet model, as the network will be shallow and will not inherit the weights from
the pre-trained ResNet, as shown in Algorithm 2. This custom ResNet reduces computational complexity by
using fewer residual blocks while preserving the core identity mapping mechanism to enhance gradient flow
during training. This makes it computationally lighter and focuses more on learning specific patterns in the HAR
dataset rather than the general features present in pre-trained ResNets, as shown in Figure 5. The mathematical
formulation of a residual block is as follows:

Layer 0 Feature Maps

Figure 4: One of the layer weights of | Figure 5: First Layer Feature map of applauding
Applauding action using Attention mapping action using ResNet
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Algorithm 2 Custom ResNet for HAR

Initialize System Configuration

Set GPU = NVIDIA Tesla V100

Set RAM >16 GB

Load Python Libraries: NumPy, Matplotlib, OpenCV, Torchvision
Select Framework: PyTorch

Select Dataset: Stanford 40 Action Dataset

Procedure BuiLD RESNET(input size, num classes)

Initialize Input Layer: (224,224,3) for RGB or (224,224,1) for grayscale
For each residual block in range(3 to 4) do

10. Apply convolutional layers with Batch Normalization and ReLU

11. Add Skip Connection

12. end for

13. Flatten output and apply Fully Connected Layer (size = num classes)
14. Apply Softmax activation

15. return Model

16. end procedure

oSN~ WM E

Performance Analysis and Result
Performance Measure

The proposed customized human activity recognition models are evaluated by following the performance
measures. The confusion matrix can be used to visualize how well the model distinguishes between different
activities, such as fixing a bike, looking through a telescope, phoning, throwing frisby, washing dishes,
applauding, etc. Also, it can derive the overall classification Accuracy, Error rate, Precision, Recall, and F1-
score.

Evaluation setup

In this study, four sets of experiments are conducted. Initially, a series of tests is carried out to assess the
performance of HoG combined with individual classification models such as DT, SVM, KNN, NB, and RF. In
the second phase, experiments focus on analyzing the hybridization behavior and effectiveness of these methods,
incorporating CNN-based attribute selection with Vision Transformer. The third phase evaluates the
performance of a customized ResNet model and its variants. Finally, the proposed techniques are compared
against existing human activity recognition systems to assess their efficiency.

Result for setup |

In the first setup, we used HoG techniques for feature selection, which used a 3780-feature map. Table 1 depicts
the performance of HoG along with the single classification models like DT, SVM, KNN, NB, and RF, on
experimenting it using parameters like accuracy, Precision, Recall, and F1-score, and the corresponding
confusion matrix table for the proposed HoG+SVM includes 40 action class labels represented in Tables B &
C (appendix). Result Summary: Among all the classifiers considered, the SVM model could achieve an
accuracy of 89.90% depending on the dataset’s complexity, and outperforms all other classifiers in terms of
accuracy and robustness to background noise. Figure 6 depicts the performance of HoG along with the single
classification model in terms of accuracy.

Table 1: Performance comparison between HoG along with Base classification

Classifier HoG+DT HoG+SVM HoG+KNNHoG+NB HoG+RF
Accuracy |85.75 89.80 86.40 87.75 86.33
Error rate (14.25 10.20 13.60 12.25 13.67
Precision [88.42 90.89 87.64 88.77 88.52
Recall 88.84 93.00 91.08 92.04 89.76
F1l-score  [88.63 01.93 89.33 90.38 89.14
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Table 2: Performance comparison between CNN along with ViT.

Classifier CNN-+VIiT |[CNN (ResNet 18) [VIT (Base)
Accuracy 93.98 91.55 88.58
Error rate 06.03 08.45 11.43
Precision 94.31 92.93 92.58
Recall 96.16 93.60 88.84
F1-score 95.23 93.26 90.67

Figure 6: Accuracy comparison between HoG along with Base classificatio

Accuracy Comparison

HoG+DT HoG+5VM HoG+KNN HoG+NB HoG+RF

Classifiers

]

Accuracy (%)
® ° = ®
w o ~

[=+]
(]

Result for setup 11

We used CNN techniques for feature selection, which used a 64 x 64-feature map followed by the Vision
Transformer for classification Model building. Table 2 depicts the performance of CNN along with the Vision
transformer classification model on experimenting it using parameters like accuracy, Precision, Recall, and F1-
score. To compare the efficiency of the proposed model, we used two more classification models, such as CNN

(ResNet 18) and VIT (Base). Figure 7 depicts the performance of CNN+ViT along with the CNN (ResNet 18)
and ViT (Base) in terms of accuracy.

Figure 7: Accuracy comparison between CNN along ViT

Accuracy Comparison

Accuracy (%)

CNN+VIT CNN (ResNet 18) ViT (Base)

Classifiers

Result Summary: Typically, the CNN + ViT model could achieve an accuracy of 93.98% and outperform both
approaches individually in terms of accuracy, particularly when considering the CNN’s ability to capture low-
level features and ViT’s ability to model global dependencies. However, ViTs generally provide robust
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performance on long-range dependencies, leading to higher precision and recall for complex activities.
Validation loss over epochs to check for overfitting and convergence to expect a steady increase in accuracy,
plateauing after some epochs, depending on the complexity of the dataset and model. Also, we checked
inference time, and in real-time applications, inference time should be measured to assess the model’s
suitability for deployment. For instance, with a trained model, each image might take 50-200 ms depending
on the complexity of the model and hardware.

Result for setup 11

In this setup, we used a Custom ResNet for Human Activity Recognition classification Model. Table 3
depicts the performance of custom ResNet classification model on experimenting it using parameters like
accuracy, Precision, Recall and F1-score. To compare the efficiency of the proposed model we used two
more classification model such as ResNet-18 (Pre-trained) and CNN (No Residuals).

Table 3: Performance comparison between Custom ResNet and baseline model

Classifier |Custom ResNet [ResNet-18 (Pre-trained) [CNN (No Residuals)
Accuracy [95.63 91.55 87.02
Error rate |04.38 08.45 12.98
Precision  |96.89 92.93 88.20
Recall 96.08 93.60 85.47
Fl-score |96.49 93.26 86.81

Result Summary: Typically, the Custom ResNet model could achieve an accuracy of 95.63% and
outperform both approaches individually in terms of accuracy. The custom ResNet achieves higher
accuracy than a CNN model without residuals, showing the benefit of residual connections in deeper
networks. Also, the custom ResNet has a lower inference time compared to ResNet-18, making it more
efficient for real-time HAR applications, and despite fewer parameters, the custom ResNet generalizes well
to unseen data due to the use of residual blocks and GAP. However, the custom ResNet model performs
well in distinguishing activities with similar patterns, thanks to its ability to learn hierarchical features. The
model converges within 50-60 epochs, indicating that the reduced depth is sufficient for the task. The
validation accuracy plateaus after a few epochs, indicating that the model is generalizing well and not
overfitting. Figure 8 depicts the performance of Custom ResNet along with the ResNet-18 (Pre-trained)
and CNN (No Residuals) in terms of accuracy. However, Custom ResNet generally provides robust
performance on long-range dependencies, leading to higher precision and recall for complex activities.

Figure 8: Accuracy comparison between the Custom ResNet and baseline model

Accuracy Comparison

Custom ResMet ResMet-18 (Pre-trained) CMNN (Mo Residuals)

Classifiers
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Result for setup IV

In this setup, the efficiency of the proposed techniques is compared with existing techniques proposed by
Lin et al (2021)[26] and Yao et al (2023) [27]. Table 4 depicts the performance of the proposed three
classification models, such as HOG++SVM, CNN+VIiT, and custom ResNet, compared with three
existing classification models, such as EAPT (Efficient Attention Pyramid Transformer) [26], Pose
Generation Network (PGN), and Pose Refinement Network (PRN) [27].

Table 4: Performance Comparison of three customized proposed models vs Existing models

Classifier HOG+SVM [CNN+VIT |Custom ResNet EAPT [31] PGN [32] PRN [32]
Accuracy (89.80 93.98 95.63 03.30 86.10 91.90
Error rate [10.20 06.03 04.38 06.70 13.90 08.10
Precision [90.89 94.31 96.89 05.85 89.24 97.76
Recall 93.00 96.16 96.08 03.32 88.88 90.12
F1-score [91.93 95.23 96.49 94.57 89.06 03.78

Lin et al. introduce EAPT, an efficient attention pyramid transformer designed to enhance image
processing tasks. Their method optimizes attention mechanisms across hierarchical levels to capture both
local and global image features effectively. The approach improves processing efficiency and accuracy,
demonstrating significant advancements in transformer-based image analysis. This work provides valuable
insights into scalable and high-performance image processing techniques [26]. Yao et al. present a
transformer-based method for scene-aware human pose generation. Their approach integrates contextual
scene information to generate realistic and contextually appropriate human poses. This method
advances the field by achieving higher accuracy and naturalness in pose generation tasks. The work
showcases the potential of transformers in enhancing scene-aware synthesis applications [27].

Result Summary: Typically, the Custom ResNet model could achieve an accuracy of 95.63% and
outperform the existing approaches individually in terms of accuracy. Figure 9 shows the Accuracy
Comparison of three customized proposed models vs existing models. The ROC curve compares the
performance of six classifiers as shown in Figure 10, with Custom ResNet achieving the highest AUC
(0.95), followed by CNN+VIT (0.91) and EAPT (0.90). HOG+SVM and PRN show moderate
performance with an AUC of 0.86, while PGN performs the lowest at 0.81. A higher AUC indicates better
classification ability, with curves closer to the top-left corner representing superior models.

Accuracy Comparison ,
ROC Curve Comparison
9% 1.0
96
9% = ’
- 92 352 7
§ g “ '/
= ] 4
g% 206 i
g s N
5 88 & nits
g it {
= 1
<% 5 aitf
204 it
3 g | [ .
2 .-‘u',' ,,/ === HoG+SVM (AUC = 0.86)
82 wii) === CNN4+VIT (AUC = 0.91)
02 iy Custom ResNet (AUC = 0.95)
80 -3 == EAPT (AUC = 0,90)
HoG+5VM  CNN+VIT Custom EAPT PGN PRN H === PGN (AUC = 0.81)
ResNet g -= PRN (AUC = 0.86)
esiie 0o * == Random Guess
Classifiers 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (FPR)

Figure 9: Accuracy Comparison of three | Figure 10: RoC Comparison
customized proposed models vs Existing models
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Practical Use Cases in Real-World Settings
The proposed hybrid HAR model can be effectively applied in several real-world domains:

e Healthcare and Elderly Assistance:Continuous monitoring of daily living activities, early detection of
abnormal movements, and fall detection for elderly or post-operative patients.

e Smart Home Automation:Recognition of user activities to automatically adjust lighting, HVAC systems,
or appliance control for energy optimization and enhanced comfort.

e Workplace Safety:Monitoring workers' movements to detect unsafe postures, fatigue patterns, or
hazardous actions in construction, manufacturing, and mining industries.

e Fitness and Sports Analytics:Real-time activity tracking, exercise form correction, and personalized
training feedback using wearable sensors.

e 0T and Wearable Devices:The hybrid design enables deployment on low-power edge devices, improving
inference speed and reducing the need for continuous cloud communication.

CONCLUSION

In this project, we investigated advanced methodologies for Human Activity Recognition (HAR),
combining Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), and a custom ResNet
model to address the challenges of computational efficiency, dataset limitations, and model complexity.
Our preprocessing approach emphasized grayscale image conversion to reduce complexity and Gaussian
Blur application to enhance feature stability. CNNs enabled hierarchical feature extraction, while ViTs
contributed by capturing global image relationships through their attention mechanisms, improving the
model’s robustness in scenarios with clutter or occlusion. A custom ResNet was developed to optimize
performance on smaller datasets, ensuring computational efficiency by simplifying the architecture and
excluding pre-trained weights while leveraging techniques such as batch normalization and global average
pooling for enhanced generalization. Experiments revealed that the custom ResNet achieved superior
accuracy, precision, recall, and inference speed compared to traditional CNNs and pre-trained ResNet
models, demonstrating its suitability for real-time applications. Data augmentation strategies effectively
mitigated overfitting, further supporting the model’s applicability to smaller datasets. The integration of
these methodologies offers a versatile and adaptive solution for HAR, capable of handling diverse
environments and activities, making it suitable for deployment in resource- limited settings such as mobile
devices and embedded systems for applications like activity monitoring and health tracking. This work
highlights the potential of combining CNNs, ViTs, and ResNet to create a robust system for HAR,
providing a foundation for future research and practical applications.
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APPENDIX

Table A -Data set description

Action No of Images | No of Images | Total
(Training) (Testing) Images
Fixing a bike 184 (64.8%) 100 (35.2%) 284
Looking through a telescope | 159 (61.4%) 100 (38.6%) 259
Phoning 100 (50.0%) 100 (50.0%) 200
Throwing frisby 112 (52.8%) 100 (47.2%) 212
Washing dishes 195 (66.1%) 100 (33.9%) 295
Applauding 188 (65.3%) 100 (34.7%) 288
Playing guitar 103 (50.7%) 100 (49.3%) 203
Pushing a cart 89 (47.1%) 100 (52.9%) 189
Holding an umbrella 156 (60.9%) 100 (39.1%) 256
Blowing bubbles 187 (65.2%) 100 (34.8%) 287
Riding a horse 173 (63.4%) 100 (36.6%) 273
Climbing 128 (56.1%) 100 (43.9%) 228
Cooking 451 (60.2%) 100 (39.8%) 751
Writing on a book 99 (49.7%) 100 (50.3%) 199
Cleaning the floor 192 (65.8%) 100 (34.2%) 292
Reading 195 (66.1%) 100 (33.9%) 295
Smoking 91 (47.6%) 100 (52.4%) 191
Walking the dog 103 (50.7%) 100 (49.3%) 203
Rowing a boat 159 (61.4%) 100 (38.6%) 259
Fixing a car 189 (65.4%) 100 (34.6%) 289
Watching TV 160 (61.5%) 100 (38.5%) 260
Taking photos 100 (50.0%0) 100 (50.0%) 200
Running 135 (57.4%) 100 (42.6%) 235
Cutting trees 145 (59.2%) 100 (40.8%) 245
Texting message 193 (65.9%) 100 (34.1%) 293
Drinking 196 (66.2%) 100 (33.8%) 296
Waving hands 85 (46.0%) 100 (54.0%) 185
Writing on a board 151 (60.2%) 100 (39.8%) 251
Jumping 114 (53.3%) 100 (46.7%) 214
Pouring liquid 141 (58.5%) 100 (41.5%) 241
Riding a bike 97 (49.2%) 100 (50.8%) 197
Shooting an arrow 93 (48.2%) 100 (51.8%) 193
Using a computer 102 (50.5%) 100 (49.5%) 202
Cutting vegetables 130 (56.5%) 100 (43.5%) 230
Fishing 193 (65.9%) 100 (34.1%) 293
Gardening 82 (45.1%) 100 (54.9%) 182
Feeding a horse 123 (55.2%) 100 (44.8%) 223
Playing violin 110 (52.4%) 100 (47.6%) 210
Brushing teeth 83 (45.4%) 100 (54.6%) 183
Looking through a telescope | 146(59.3%) 100 (40.7%) 246
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Table B: 40 x 20 [1-20 column] Confusion Matrix with proposed HoG+SVM model
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Table C: 40 x 20 [21-40 column] Confusion Matrix with proposed HoG+SVM model
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